1887

Abstract

We have cloned the region of tomato ringspot nepovirus (TomRSV) RNA-1 coding for the putative TomRSV 3C-related protease (amino acids 1213 to 1508) in a transcription vector and in a transient expression vector. Using cell-free transcription and translation systems and plant protoplasts, we have demonstrated that proteins produced from these clones possess a proteolytic activity in on the cleavage site between the TomRSV movement and coat proteins. By amino acid homology of the TomRSV 3C-related protease with other nepo- and comovirus proteases, His, Glu (or Asp) and Cys have been predicted to constitute the catalytic triad. Site-directed mutagenesis of His to Asp abolished the TomRSV protease activity, and . The cleavage site between the TomRSV movement and coat proteins has been determined to be Q/G, by direct protein sequencing. Previously, His located in the substrate binding pocket of the TomRSV 3C-related protease has been suggested to be involved in the cleavage site specificity. We show that an inactive TomRSV 3C-related protease is obtained after substitution of His with Leu. These results are discussed in light of the possible relation of the TomRSV 3C-related protease to 3C-related proteases of nepo-, como- and potyviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-917
1995-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040917.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-917&mimeType=html&fmt=ahah

References

  1. Allaire M., Chernala M. M., Malcolm B. A., James M. N. G. 1994; Picomaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76
    [Google Scholar]
  2. Allen W. R., Dias H. F. 1977; Properties of the single protein and two nucleic acids of tomato ringspot virus. Canadian Journal of Botany 55:1028–1037
    [Google Scholar]
  3. Andino R., Rieckhof G. E., Achacoso P. L., Baltimore D. 1993; Poliovirus RNA synthesis utilizes an RNP complex found around the 5′-end of viral RNA. EMBO Journal 12:3587–3598
    [Google Scholar]
  4. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences, USA 85:7872–7876
    [Google Scholar]
  5. Bazan J. F., Fletterick R. J. 1990; Structural and catalytic models of trypsin-like viral proteases. Seminars in Virology 1:311–322
    [Google Scholar]
  6. Bertioli D. J., Harris R. D., Edwards M. L., Cooper J. I., Hawes W. S. 1991; Transgenic plants and insect cells expressing the coat protein of arabis mosaic virus produce empty virus-like particles. Journal of General Virology 72:1801–1809
    [Google Scholar]
  7. Block V. C., Wardell J., Jolly C. A., Manoukian A., Robinson D. J., Edwards M. L., Mayo M. A. 1992; The nucleotide sequence of RNA-2 of raspberry ringspot nepovirus. Journal of General Virology 73:2189–2194
    [Google Scholar]
  8. Brault V., Hibrand L., Candresse T., Le Gall O., Dunez J. 1989; Nucleotide sequence and genetic organization of Hungarian grapevine chrome mosaic nepovirus RNA2. Nucleic Acids Research 17:7809–7819
    [Google Scholar]
  9. Buckley B., Silva S., Singh S. 1994; Nucleotide sequence and in vitro expression of the capsid protein gene of tobacco ringspot virus. Virus Research 30:335–349
    [Google Scholar]
  10. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. 1988; The pMTL nic cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149
    [Google Scholar]
  11. Demangeat G., Greif C., Hemmer O., Fritsch C. 1990; Analysis of the in vitro cleavage products of the tomato black ring virus RNA-1-encoded 250K polyprotein. Journal of General Virology 71:1649–1654
    [Google Scholar]
  12. Demangeat G., Hemmer O., Reinbolt J., Mayo M. A., Fritsch C. 1992; Virus-specific proteins in cells infected with tomato black ring nepovirus: evidence for proteolytic processing in vivo . Journal of General Virology 73:1609–1614
    [Google Scholar]
  13. Dessens J. T., Lomonossoff G. P. 1991; Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease. Virology 184:738–746
    [Google Scholar]
  14. Dessens J. T., Lomonossoff G. P. 1992; Sequence upstream of the 24K protease enhances cleavage of the cowpea mosaic virus B RNA-encoded polyprotein at the junction between the 24K and the 87K proteins. Virology 189:225–232
    [Google Scholar]
  15. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  16. Dougherty W. G., Parks T. D., Cary S. M., Bazan J. F., Fletterick R. J. 1989a; Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172:302–310
    [Google Scholar]
  17. Dougherty W. G., Cary S. M., Parks T. D. 1989b; Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 171:356–364
    [Google Scholar]
  18. Francki R. I. B., Milne R. G., Hatta T. 1985; Nepovirus group. In Atlas of Plant Viruses vol II p 23 Boca Raton: CRC Press;
    [Google Scholar]
  19. Futterer J., Gordon K., Pfeiffer P., Sanfaçon H., Pisan B., Bonneville J. M., Hohn T. 1989; Differential inhibition of downstream gene expression by cauliflower mosaic virus 35S RNA leader. Virus Genes 3:45–55
    [Google Scholar]
  20. Goldbach R., Eggen R., de Jager C., van Kammen A. 1990; Genetic organization, evolution and expression of plant viral RNA genomes. In Recognition and Response in Plant-Virus Interactions, NATO ASI series vol H41 pp 147–162 Berlin: Springer-Verlag;
    [Google Scholar]
  21. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. 1989; Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Letters 243:103–114
    [Google Scholar]
  22. Hämmerle T., Hellen C. U. T., Wimmer E. 1991; Site-directed mutagenesis of the putative catalytic triad of poliovirus 3C proteinase. Journal of Biological Chemistry 266:5412–5416
    [Google Scholar]
  23. Ivanoff L. A., Towatari T., Ray J., Korant B. D., Petteway S. R. 1986; Expression and site-specific mutagenesis of the poliovirus 3C protease in Escherichia coli . Proceedings of the National Academy of Sciences, USA 83:5392–5396
    [Google Scholar]
  24. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, USA 82:488–492
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  26. Margis R., Pinck L. 1992; Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190:884–888
    [Google Scholar]
  27. Margis R., Viry M., Pinck M., Pinck L. 1991; Cloning and in vitro characterization of grapevine fanleaf virus proteinase cistron. Virology 185:779–787
    [Google Scholar]
  28. Margis R., Ritzenthaler C., Reinbolt J., Pinck M., Pinck L. 1993; Genome organization of grapevine fanleaf nepovirus RNA-2 deduced from the 122K polyprotein-P2 in vitro cleavage products. Journal of General Virology 74:1919–1926
    [Google Scholar]
  29. Margis R., Viry M., Pinck M., Bardonnet N., Pinck L. 1994; Differential proteolytic activities of precursor and mature forms of the 24K proteinase of grapevine fanleaf nepovirus. Virology 200:79–86
    [Google Scholar]
  30. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Buda-hazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L., Worland S. 1994; Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771
    [Google Scholar]
  31. Negrutiu I., Shillito R., Potrykus I., Biasini G., Sala F. 1987; Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Molecular Biology 8:363–373
    [Google Scholar]
  32. Neumann J. R., Morency C. A., Russian K. O. 1987; A novel and rapid assay for chloramphenicol acetyltransferase gene expression. Bio /Techniques 5:444–447
    [Google Scholar]
  33. Peters S. A., Voorhorst W. G. B., Wery J., Wellink J., van Kammen A. 1992; A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191:81–89
    [Google Scholar]
  34. Pfau J., Youderian P. 1990; Transferring plasmid DNA between different bacterial species with electroporation. Nucleic Acids Research 18:6165
    [Google Scholar]
  35. Pietrzak M., Shillito D., Hohn T., Potrykus I. 1986; Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Research 14:5857–5868
    [Google Scholar]
  36. Pinck M., Reinbolt J., Loudes A. M., Le Ret M., Pinck P. 1991; Primary structure and location of genome-linked protein (VPg) of grapevine fanleaf nepovirus. FEBS Letters 284:117–119
    [Google Scholar]
  37. Ritzenthaler C., Viry M., Pinck M., Margis R., Fuchs M., Pinck L. 1991; Complete nucleotide sequence and genetic organization of grapevine fanleaf nepovirus RNA1. Journal of General Virology 72:2357–2365
    [Google Scholar]
  38. Rott M. E., Tremaine J. H., Rochon D. M. 1991; Nucleotide sequence of tomato ringspot virus RNA-2. Journal of General Virology 12:1505–1515
    [Google Scholar]
  39. Rott M. E., Gilchrist A., Lee L., Rochon D. M. 1995; Nucleotide sequence of tomato ringspot virus RNA1. Journal of General Virology 76:465–473
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sanfacon H. 1994; Nepoviruses. In Pathogenesis and Host-Parasite Specificity in Plant Disease vol III Virus and Viroids Oxford: Pergamon Press; (in press)
    [Google Scholar]
  42. Serghini M. A., Fuchs M., Pinck M., Reinbolt J., Walter B., Pinck L. 1990; RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location. Journal of General Virology 71:1433–1441
    [Google Scholar]
  43. Shih D. S., Bu M., Price M. A., Shih C. Y. T. 1987; Inhibition of cleavage of a plant viral polyprotein by an inhibitor activity present in wheat germ and cowpea embryos. Journal of Virology 61:912–915
    [Google Scholar]
  44. Torruella M., Gordon K., Hohn T. 1989; Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. EMBO Journal 8:2819–2925
    [Google Scholar]
  45. Wieczorek A., Sanfacon H. 1993; Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194:734–742
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-4-917
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-917
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error