1887

Abstract

The maturation of rubella virus (RV) glycoproteins E2 and E1 was examined by using brefeldin A (BFA) and monensin. BFA, which induces the rapid redistribution of Golgi enzymes residing in the Golgi complex into the endoplasmic reticulum (ER), was used to locate the intracellular site for the modification of carbohydrate side-chains on RV E1 and E2 proteins. The monovalent ionophore monensin, which inhibits intracellular transport of proteins through the ER-Golgi complex, was used to block the transport of E1 and E2 glycoproteins through the Golgi complex. BFA and monensin effectively blocked the cell surface expression of RV E2 and E1 proteins, secretion of an anchor-free form of E2 and budding of RV from the plasma membrane. For -linked glycosylation, addition of -acetylgalactosamine and galactose to E2 protein was found to take place in the medial to the trans Golgi. A dramatic change in the intracellular distribution of RV structural proteins was observed when transfected COS cells were treated with BFA or monensin, although the proteolytic processing of RV structural protein precursor was not affected. In the presence of BFA or monensin, virus release from infected Vero cells was only 0.1% of the intracellular virus, and the intracellular virus titre decreased as well. Our results suggest that -linked glycosylation on the E2 protein occurred in the post-ER region and the transport of RV structural proteins to the Golgi complex and post-Golgi compartment may be a rate-limiting step in RV assembly and budding.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-855
1995-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040855.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-855&mimeType=html&fmt=ahah

References

  1. Adams G. A., Rose J. K. 1985; Structure requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell 41:1007–1015
    [Google Scholar]
  2. Andersson S., Davis D. L., Dahlback H., Jornvall H., Russell D. W. 1989; Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. Journal Biological Chemistry 264:8222–8229
    [Google Scholar]
  3. Bardeletti G., Tektoff J., Gautheron D. 1979; Rubella virus maturation and production in two host cell systems. Intervirology 11:97–103
    [Google Scholar]
  4. Baron M., Forsell K. 1991; Oligomerization of the structural proteins of rubella virus. Virology 185:811–819
    [Google Scholar]
  5. Baron M. D., Ebel T., Suomalainen M. 1992; Intracellular transport of rubella virus structural proteins expressed from cloned cDNA. Journal of General Virology 73:1073–1086
    [Google Scholar]
  6. Bowden D. S., Westaway E. G. 1985; Change in glycosylation of rubella virus envelope proteins during maturation. Journal of General Virology 66:201–206
    [Google Scholar]
  7. Chen S., Matsuoka Y., Compans R. W. 1991; Assembly and polarized release of punta toro virus and effect of brefeldin A. Journal of Virology 65:1427–1439
    [Google Scholar]
  8. Clarke D., Loo T., Hui I., Chong P., Gillam S. 1987; Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic mRNA encoding the structural proteins E1, E2 and C. Nucleic Acids Research 15:3041–3057
    [Google Scholar]
  9. Collins P. L., Mottet G. 1992; Oligomerization and post-translational processing of glycoprotein G of human respiratory syncytial virus: altered O-glycosylation in the presence of brefeldin A. Journal of General Virology 73:849–863
    [Google Scholar]
  10. Fujiwara T., Oda K., Yokota S., Takatsuki A., Ikehara Y. 1988; Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. Journal of Biological Chemistry 263:18545–18552
    [Google Scholar]
  11. Fukuda A., Hissihiyama M., Umino Y., Sugiura A. 1987; Immunocytochemical focus assay for potency determination of measles-, mumps-, rubella trivalent vaccine. Journal of Virological Methods 15:279–284
    [Google Scholar]
  12. Haggerty S., Dempsey M. P., Bukrinsky M. I., Guo L., Stevenson M. 1991; Post-translational modification within the HIV envelope glycoprotein which restrict virus assembly and CD4-dependent infection. AIDS Research and Human Retroviruses 7:501–510
    [Google Scholar]
  13. Hobman T., Gillam S. 1989; In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. Virology 173:241–250
    [Google Scholar]
  14. Hobman T., Lundstrom M. L., Gillam S. 1990; Processing and intracellular transport of rubella virus structural proteins in COS cells. Virology 178:122–133
    [Google Scholar]
  15. Hobman T. C., Woodward L., Farquhar M. G. 1992; The rubella virus E1 glycoprotein is arrested in a novel post-ER, pre-Golgi compartment. Journal of Cell Biology 118:792–781
    [Google Scholar]
  16. Hobman T. C., Woodward L., Farquhar M. G. 1993; The rubella virus E2 and El spike glycoproteins are targeted to the Golgi complex. Journal of Cell Biology 121:269–281
    [Google Scholar]
  17. Hobman T. C., Seto N., Gillam S. 1994; Expression of soluble forms of rubella virus glycoproteins in mammalian cell. Virus Research 31:277–289
    [Google Scholar]
  18. Johnson D. C., Schlesinger M. J. 1980; Vesicular stomatitis virus and sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology 143:407–424
    [Google Scholar]
  19. Lippincott-Schwartz J., Yuan L. C., Bonofacino J. S., Klausner R. D. 1989; Rapid redistribution of Golgi protein into the endoplasmic reticulum in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56:801–813
    [Google Scholar]
  20. Lundstrom M. L., Mauracher C. A., Tingle A. J. 1991; Characterization of carbohydrates linked to rubella virus E2. Journal of General Virology 72:843–850
    [Google Scholar]
  21. Matthews R. E. F. 1982; Classification and Nomenclature of Viruses. Third Report of the International Committee on Taxonomy of Viruses. Intervirology 17:1–199
    [Google Scholar]
  22. McDonald H., Hobman T. C., Gillam S. 1991; The influence of capsid protein cleavage on the processing of E2 and E1 glycoproteins of rubella virus. Virology 183:52–60
    [Google Scholar]
  23. Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. 1986; Novel blockage by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. Journal of Biological Chemistry 261:11398–11403
    [Google Scholar]
  24. Mollenhauer H. H., Orr D. J., Rowe L. D. 1990; Alteration of intracellular traffic by monensin: mechanism, specificity and relationship to toxicity. Biochimica et Biophysica Acta 1031:225–246
    [Google Scholar]
  25. Oda K., Fujiwara T., Ikehara Y. 1990; Brefeldin A arrests the intracellular transport of viral envelope proteins in primary cultured rat hepatocytes and HepG2 cells. Biochemistry Journal 265:161–167
    [Google Scholar]
  26. Ogura H., Sato H., Kamiya S., Nakamura S. 1991; Glycosylation of measles virus haemagglutinin protein in infected cells. Journal of General Virology 72:2674–2684
    [Google Scholar]
  27. Oker-Blom C., Kalkkine L., Kaariainen L., Pettersson R. F. 1983; Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a and E2b. Journal of Virology 46:964–973
    [Google Scholar]
  28. Oker-Blom C., Ulmanen D., Kaariaine L., Pettersson R. F. 1984; Rubella virus 40S genome RNA specified a 24S subgenomic mRNA that codes for a precursor to structural proteins. Journal of Virology 49:403–108
    [Google Scholar]
  29. Payment P., Ajdukovic D., Pavilanis V. 1975; Le virus de la rubeole. I. Morphologie et proteines structurales. Canadian Journal of Microbiology 21:703–709
    [Google Scholar]
  30. Porterfield J. S., Casals J., Chumakov M. P., Gaidamovich S. Y., Hannoun C., Holmes I. H., Horzinek M., Mussgay M., Oker-Blom N., Trent D. W. 1978; Togaviridae. Intervirology 9:129–148
    [Google Scholar]
  31. Pressman B. C. 1976; Biological application of ionophores. Annual Review of Biochemistry 45:501–530
    [Google Scholar]
  32. Qiu Z., Hobman T. C., McDonald H., Seto N., Gillam S. 1992; The role of N-linked glycosylation on processing and intracellular transport of rubella virus E2 glycoprotein. Journal of Virology 66:3514–3521
    [Google Scholar]
  33. Qiu Z., McDonald L. H., Chen J., Hobman T. C., Gillam S. G. 1994a; Mutational analysis of the arginine residues in the E2-E1 junction region on the proteolytic processing of the polyprotein precursor of rubella virus. Virology 200:821–825
    [Google Scholar]
  34. Qiu Z., Ou D., Wu H., Hobman T. C., Gillam S. 1994b; Expression and characterization of virus-like particles containing rubella virus structural proteins. Journal of Virology 68:4086–4091
    [Google Scholar]
  35. Sanchez A., Frey T. K. 1991; Vaccinia-vectored expression of rubella virus structural proteins and characterization of the E1 and E2 glycosidic linkages. Virology 183:636–646
    [Google Scholar]
  36. Vaheri A., Hovi T. 1972; Structural proteins and subunits of rubella virus. Journal of Virology 9:10–16
    [Google Scholar]
  37. Von Bonsdorff C. H., Vaheri A. 1969; Growth of rubella virus in BHK21 cells: electron microscopy of morphogenesis. Journal of General Virology 5:47–51
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-4-855
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error