Revertants and pseudo-revertants of human immunodeficiency virus type 1 viruses mutated in the long terminal repeat promoter region Free

Abstract

The TAR domain is an RNA secondary structure element within the leader transcript of the human immunodeficiency virus type 1 (HIV-1) virus. TAR RNA forms the binding site for the viral -activator protein Tat and cellular co-factors that are involved in induction of the LTR transcriptional promoter. Here, we report that mutations in the single-stranded bulge- and loop-domains of TAR RNA impair the ability of the virus to replicate in T cell lines. Revertant viruses were isolated upon prolonged culturing and analysed through sequencing. The reversion data confirm the importance of both bulge and loop as sequence-specific recognition motifs. We also analysed the replication phenotype of a mutant HIV-1 virus with a substitution in the -19/-3 promoter region. This mutant displayed delayed infection kinetics compared to the wild-type virus, and revertants with increased replication potential could be isolated. Interestingly, all revertants had acquired an additional mutation at position -2. Primer extension analyses revealed that an upstream shift in transcription start site usage was induced by the -19/-3 substitution. This effect was compensated for by the nucleotide substitution near the RNA start site.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-845
1995-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040845.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-845&mimeType=html&fmt=ahah

References

  1. Ahmad N., Venkatesan S. 1988; Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science 241:1481–1485
    [Google Scholar]
  2. Bagasra O., Khalili K., Seshamma T., Taylor J. P., Pomerantz R. J. 1992; TAR-independent replication of human immunodeficiency virus type 1 in glial cells. Journal of Virology 66:7522–7528
    [Google Scholar]
  3. Berkhout B., Jeang K.-T. 1989; Trans-activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: a quantitative analysis. Journal of Virology 63:5501–5504
    [Google Scholar]
  4. Berkhout B., Klaver B. 1993; In vivo selection of randomly mutated retroviral genomes. Nucleic Acids Research 21:5020–5024
    [Google Scholar]
  5. Berkhout B., Silverman R., Jeang K.-T. 1989; Tat trans-activates the Human Immunodeficiency Virus through a nascent RNA target. Cell 59:273–282
    [Google Scholar]
  6. Berkhout B., Gatignol A., Rabson A. B., Jeang K. T. 1990a; TAR-independent activation of the HIV-1 LTR: evidence that TAR requires regions of the promoter. Cell 62:757–767
    [Google Scholar]
  7. Berkhout B., Gatignol A., Silver J., Jeang K. T. 1990b; Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. Nucleic Acids Research 18:1839–1846
    [Google Scholar]
  8. Breathnach R., Chambon P. 1981; Organization and expression of eucaryotic split genes coding for proteins. Annual Review of Biochemistry 50:349–383
    [Google Scholar]
  9. Bucher P., Trifonov E. N. 1986; Compilation and analysis of eukaryotic Pol II promoter sequences. Nucleic Acids Research 14:10009–10026
    [Google Scholar]
  10. Buratowski S., Hahn S., Guarente L., Sharp P. A. 1989; Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561
    [Google Scholar]
  11. Calnan B. J., Tidor B., Biancalana S., Hudson D., Frankel A. D. 1991; Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171
    [Google Scholar]
  12. Cullen B. R. 1991; Regulation of HIV-1 gene expression. FASEB Journal 5:2361–2368
    [Google Scholar]
  13. Das A. T., Koken S. E. C., Oude Essink B. B., van Wamel J. L. B., Berkhout B. 1994; Human immunodeficiency virus uses tRNAlys, 3 as primer for reverse transcription in HeLa-CD4+ cells. FEBS Letters 341:49–53
    [Google Scholar]
  14. Dimitrov D. S., Willey R. I., Sato H., Chang L.-J., Blumenthal R., Martin M. A. 1993; Quantitation of human immunodeficiency virus type 1 infection kinetics. Journal of Virology 67:2182–2190
    [Google Scholar]
  15. Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A., Valerio R. 1989; Human immunodeficiency virus 1 Tat protein binds transactivation-responsive region (TAR) RNA in vitro. Proceedings of the National Academy of Sciences, USA 86:6925–6929
    [Google Scholar]
  16. Du H., Roy A. L., Roeder R. G. 1993; Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO Journal 12:501–511
    [Google Scholar]
  17. Fujita K., Silver J., Peden K. 1992; Changes in both gp120 and gp41 can account for increased growth potential and expanded host range of human immunodeficiency virus type 1. Journal of Virology 66:4445–4451
    [Google Scholar]
  18. Garcia J. A., Wu F. K., Mitsuyasu R., Gaynor R. B. 1987; Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO Journal 6:3761–3770
    [Google Scholar]
  19. Harrich D., Garcia J., Mitsuyasu R., Gaynor R. B. 1990; TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes. EMBO Journal 9:4417–4423
    [Google Scholar]
  20. Harrich D., Hsu C., Race E., Gaynor R. B. 1994; Differential growth kinetics are exhibited by human immunodeficiency virus type 1 TAR mutants. Journal of Virology 68:5899–5910
    [Google Scholar]
  21. Jeang K.-T., Berkhout B., Dropulic B. 1993; Effects of integration and replication on transcription of the HIV-1 long terminal repeat. Journal of Biological Chemistry 268:24940–24949
    [Google Scholar]
  22. Ji J., Loeb L. A. 1994; Fidelity of HIV-1 reverse transcriptase copying a hypervariable region of the HIV-1 env gene. Virology 199:322–330
    [Google Scholar]
  23. Jones K. A., Luciw P. A., Duchange N. 1988; Structural arrangements of transcription control domains within the 5′-untranslated leader regions of the HIV-1 and HIV-2 promoters. Genes & Development 2:1101–1114
    [Google Scholar]
  24. Kamine J., Subramanian T., Chinnadurai G. 1991; Sp1-dependent activation of a synthetic promoter by human immunodeficiency virus type 1 Tat protein. Proceedings of the National Academy of Sciences, USA 88:8510–8514
    [Google Scholar]
  25. Kim J. Y., Gonzalez-Scarano F., Zeichner S. L., Alwine J. C. 1993; Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the –201 to –10 region of the long terminal repeat. Journal of Virology 67:1658–1662
    [Google Scholar]
  26. Klaver B., Berkhout B. 1994a; Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Research 22:137–144
    [Google Scholar]
  27. Klaver B., Berkhout B. 1994b; Comparison of 5′ and 3′LTR promoter function in the human immunodeficiency virus. Journal of Virology 68:3830–3840
    [Google Scholar]
  28. Klaver B., Berkhout B. 1994c; Evolution of a disrupted TAR RNA hairpin structure in the HIV-1 virus. EMBO Journal 13:2650–2659
    [Google Scholar]
  29. Koken S. E. C. 1994; Transcriptional regulation of the HIV-1 virus. PhD thesis University of Amsterdam;
    [Google Scholar]
  30. Koken S. E. C., van Wamel J. L. B., Goudsmit J., Berkhout B., Geelen J. L. M. C. 1992; Natural variants of the HIV-1 long terminal repeat: analysis of promoters with duplicated DNA regulatory motifs. Virology 191:968–972
    [Google Scholar]
  31. Leonard J., Parrott C., Buckler-White A. J., Turner W., Ross E. K., Martin M. A., Rabson A. R. 1989; The NF-kB binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity. Journal of Virology 63:4919–4924
    [Google Scholar]
  32. Li Y., Flanagan P. M., Tschochner H., Kornberg R. D. 1994; RNA polymerase II initiation factor interactions and transcription start site selection. Science 263:805–807
    [Google Scholar]
  33. Myers G., Berzofsky J. A., Pavlakis G. N., Korber B., Smith R. F. (editors) 1992 Human Retroviruses and AIDS New Mexico: Los Alamos National Laboratory;
    [Google Scholar]
  34. Niederman T. M. J., Thielan B. J., Ratner L. 1989; Human immunodeficiency virus type 1 negative factor is a transcriptional silencer. Proceedings of the National Academy of Sciences, USA 86:1128–1132
    [Google Scholar]
  35. Peden K., Emerman M., Montagner L. 1991; Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1 LAI, HIV-1 MAL, and HIV-1 ELI. Virology 185:661–672
    [Google Scholar]
  36. Rhim H., Park J., Morrow C. D. 1991; Deletions in the tRNAlys primer-binding site of human immunodeficiency virus type 1 identify essential regions for reverse transcription. Journal of Virology 65:4555–4564
    [Google Scholar]
  37. Ross E. K., Buckler-White A. J., Rabson A. B., Englund G., Martin M. A. 1991; Contribution of NF-ĸ B and Sp-1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. Journal of Virology 65:4350–4358
    [Google Scholar]
  38. Roy S., Delling U., Chen C. H., Rosen C. A., Sonenberg N. 1990; A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes & Development 4:1365–1373
    [Google Scholar]
  39. Selby M. J., Peterlin B. M. 1990; Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62:769–776
    [Google Scholar]
  40. Southgate C., Zapp M. L., Green M. R. 1990; Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature 345:640–642
    [Google Scholar]
  41. Taylor J. P., Pomerantz R., Bagasra O., Chowdhury M., Rappaport J., Khalili K., Amini S. 1992; TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation. EMBO Journal 11:3395–3403
    [Google Scholar]
  42. Taylor J. P., Pomerantz R. J., Raj G. V., Kashanshi F., Brady J. N., Amini S., Khalili K. 1994; Central nervous system-derived cells express a ĸ B-binding activity that enhances human immunodeficiency virus type 1 transcription in vitro and facilitates TAR-independent transactivation by Tat. Journal of Virology 68:3971–3981
    [Google Scholar]
  43. Yu G., Felsted R. L. 1992; Effect of myristoylation on p27Nef subcellular distribution and suppression of HIV-LTR transcription. Virology 187:46–55
    [Google Scholar]
  44. Willey R. L., Smith D. H., Lasky L. A., Theodore T. S., Earl P. L., Moss B., Capon D. J., Martin M. A. 1988; In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. Journal of Virology 62:139–147
    [Google Scholar]
  45. Willey R. L., Ross E. K., Buckler-White A. J., Theodore T. S., Martin M. A. 1989; Functional interaction of constant and variable domains of human immunodeficiency virus type 1 gp120. Journal of Virology 63:3595–3600
    [Google Scholar]
  46. Zenzie-Gregory B., Sheridan P., Jones K. A., Smale S. T. 1993; HIV-1 core promoter lacks a simple initiator element but contains a bipartite activator at the transcriptional start site. Journal of Biological Chemistry 268:15823–15832
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-4-845
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-845
Loading

Data & Media loading...

Most cited Most Cited RSS feed