Detection of silencer activity in the long control regions of human papillomavirus type 6 isolated from both benign and malignant lesions Free

Abstract

Human papillomavirus type 6 (HPV-6) DNA is the predominant HPV type found in condyloma acuminata: it is rarely found in carcinomas. We have previously reported cloning and characterizing an HPV-6 from a vulvar condyloma (HPV6-W50) and an HPV-6 from a vulvar carcinoma (HPV6-T70). The E5, E6 and E7 proteins encoded by the two genomes were identical, however, the two genomes differed in the long control region (LCR). Cloning of the entire LCR into the enhancerless plasmid pSVEcat showed that the two LCRs had comparable enhancer activity. Since the major differences between the two LCRs resided in the 5′ end of the LCR, upstream of the L1 polyadenylation signal, we subcloned the two LCRs to analyse more closely their effect on gene expression. The data indicated that LCR subclones of the two genomes had comparable chloramphenicol acetyltransferase (CAT) activity. A negative regulatory region was detectable when the test plasmids were transfected into HeLa and C33A cells and in primary keratinocytes. A decrease in CAT activity was also detected when the SV40 early promoter was replaced with the putative HPV-6 E6 promoter. The negative regulatory region functioned in a position- and orientation-independent manner, thus fulfilling the definition of a silencer.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-827
1995-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040827.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-827&mimeType=html&fmt=ahah

References

  1. Auborn K. J., Galli R. L., Dilorenzo T. P., Steinberg B. M. 1989; Identification of DNA protein interactions and enhancer activity at the 5′ end of the upstream regulatory region in human papillomavirus type 11. Virology 170:123–130
    [Google Scholar]
  2. Auborn K. J., Steinberg B. M. 1991; A key DNA-protein interaction determines the function of the 5′ URR enhancer in human papillomavirus type 11. Virology 181:132–138
    [Google Scholar]
  3. Bauknecht T., Angel P., Royer H.-D., zur Hausen H. 1992; Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1. EMBO Journal 11:4607–4617
    [Google Scholar]
  4. Brand A. H., Breeden L., Abraham J., Sternglanz R., Nasmyth K. 1985; Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41:41–48
    [Google Scholar]
  5. Chong T., Chan W.-K., Bernard H.-U. 1990; Transcriptional activation of human papillomavirus 16 by nuclear factor 1, AP-1, steroid receptors and a possibly novel transcription factor, PVF: a model for the composition of genital papillomavirus enhancers. Nucleic Acids Research 18:465–470
    [Google Scholar]
  6. Chong T., Apt D., Gloss B., Isa M., Bernard H.-U. 1991; The enhancer of human papillomavirus type 16: binding sites for the ubiquitous transcription factors oct-1, NFA, TEF-2, NF1, and AP-1 participate in epithelial cell-specific transcription. Journal of Virology 65:5933–5943
    [Google Scholar]
  7. Coggin J. R., zur Hausen H. 1979; Workshop on papillomaviruses and cancer. Cancer Research 39:545–546
    [Google Scholar]
  8. Cripe T. P., Haugen T. H., Turk J. P., Tabatabai F., Schmid P. G., Dürst M., Gissmann L., Roman A., Turek L. P. 1987; Transcriptional regulation of the human papillomavirus-16 E6–E7 promoter by a keratinocyte-dependent enhancer and by viral E2 trans-activator and repressor gene products: implications for cervical carcinogenesis. EMBO Journal 6:3745–3753
    [Google Scholar]
  9. Cripe T. P., Alderborn A., Anderson R. D., Parkkinen S., Bergman P., Haugen T. H., Pettersson U., Turek L. P. 1990; Transcriptional activation of the human papillomavirus-16 p97 promoter by an 88-nucleotide enhancer containing distinct cell-dependent and AP-1-responsive modules. New Biologist 2:450–463
    [Google Scholar]
  10. Cuthill S., Sibbet G. J., Campo M. S. 1993; Characterization of a nuclear factor, papilloma enhancer binding factor-1, that binds the long control region of human papillomavirus type 16 and contributes to enhancer activity. Molecular Carcinogenesis 8:96–104
    [Google Scholar]
  11. Dollard S. C., Broker T. R., Chow L. T. 1993; Regulation of the human papillomavirus type 11 E6 promoter by viral and host transcription factors in primary human keratinocytes. Journal of Virology 67:1721–1726
    [Google Scholar]
  12. Farr A., McAteer J. A., Roman A. 1987; Transfection of human keratinocytes with pRSVcat and human papillomavirus type 6 DNA. Cancer Cells 5:171–177
    [Google Scholar]
  13. Farr A., Wang H., Kasher M. S., Roman A. 1991; Relative enhancer activity and transforming potential of authentic human papillomavirus type 6 genomes from benign and malignant lesions. Journal of General Virology 72:519–526
    [Google Scholar]
  14. Fuchs E., Green H. 1981; Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25:617–625
    [Google Scholar]
  15. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  16. Graham F. L., Van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  17. Haugen T. H., Cripe T. P., Ginder G. D., Karin M., Turek L. P. 1987; Tram-activation of an upstream early gene promoter of bovine papillomavirus-1 by a product of the viral E2 gene. EMBO Journal 6:145–152
    [Google Scholar]
  18. Hay N., Takimoto M., Bishop J. M. 1989; A FOS protein is present in a complex that binds a negative regulator of MYC . Genes & Development 3:293–303
    [Google Scholar]
  19. Iftner T., Oft M., Bohm S., Wilczynski S. P., Pfister H. 1992; Transcription of the E6 and E7 genes of human papillomavirus type 6 in anogenital condylomata is restricted to undifferentiated cell layers of the epidermis. Journal of Virology 66:4639–4646
    [Google Scholar]
  20. Ishui T., Lace M. J., Parkkinen S., Anderson R. D., Haugen T. H., Cripe T. P., Xiao J.-H., Davidson I., Chambon P., Turek L. P. 1992; Transcriptional enhancer factor (TEF)-l and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO Journal 11:2271–2281
    [Google Scholar]
  21. Jackson M. E., Campo M. S. 1991; Positive and negative E2-independent regulatory elements in the long control region of bovine papillomavirus type 4. Journal of General Virology 72:877–883
    [Google Scholar]
  22. Kasher M. S., Roman A. 1988; Characterization of human papillomavirus type 6b DNA isolated from an invasive squamous carcinoma of the vulva. Virology 165:225–233
    [Google Scholar]
  23. Kawai S., Nishizawa M. 1984; New procedure for DNA transfection with polycation and dimethyl sulfoxide. Molecular and Cellular Biology 4:1172–1174
    [Google Scholar]
  24. Kulke R., Gross G. E., Pfister H. 1989; Duplication of enhancer sequences in human papillomavirus 6 from condylomas of the mamilla. Virology 173:284–290
    [Google Scholar]
  25. Kyo S., Inoue M., Nishio Y., Nakanishi K., Akira S., Inoue H., Yutsudo M., Tanizawa O., Hakura A. 1993; NF-IL6 represses early gene expression of human papillomavirus type 16 through binding to the noncoding region. Journal of Virology 67:1058–1066
    [Google Scholar]
  26. Kyo S., Inoue M., Hayasaka N., Inoue T., Yutsudo M., Tanizawa O., Hakura A. 1994; Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology 200:130–139
    [Google Scholar]
  27. Lopez-Cabrera M., Letovsky J., Hu K.-Q., Siddiqui A. 1990; Multiple liver-specific factors bind to the hepatitis B virus core/ pregenomic promoter: trans-activation and repression by CCAAT/ enhancer binding protein. Proceedings of the National Academy of Sciences, USA 87:5069–5073
    [Google Scholar]
  28. Lucibello F. C., Slater E. P., Jooss K. U., Beato M., Muller R. 1990; Mutual transrepression of Fos and the glucocorticoid receptor: involvement of a functional domain in Fos which is absent in FosB. EMBO Journal 9:2827–2834
    [Google Scholar]
  29. Mack D. H., Laimins L. A. 1991; A keratinocyte-specific transcription factor, KRF-1, interacts with AP-1 to activate expression of human papillomavirus type 18 in squamous epithelial cells. Proceedings of the National Academy of Sciences, USA 88:91029106
    [Google Scholar]
  30. May M., Dong X.-P., Beyer-Finkler E., Stubenrauch R., Fuchs P. G., Pfister H. 1994; The E6/E7 promoter of extrachromosomal HPV-16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. EMBO Journal 13:1460–1466
    [Google Scholar]
  31. Rando R. F., Lancaster W. D., Han P., Lopez C. 1986; The noncoding region of HPV-6vc contains two distinct transcriptional enhancing elements. Virology 155:545–556
    [Google Scholar]
  32. Reh H., Pfister H. 1990; Human papillomavirus type 8 contains cis-active positive and negative transcriptional control sequences. Journal of General Virology 71:2457–2462
    [Google Scholar]
  33. Rheinwald J. G. 1980; Serial cultivation of normal human epidermal keratinocytes. Methods in Cell Biology 21A:229–254
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Santoro C., Costanzo F., Ciliberto G. 1984; Inhibition of eukaryotic tRNA transcription by potential Z-DNA sequences. EMBO Journal 3:1553–1559
    [Google Scholar]
  36. Schwarz E., Durst M., Demankowski D., Lattermann O., Zech R., Wolfsperger E., Suhai S., zur Hausen H. 1983; DNA sequence and genome organization of genital human papillomavirus type 6b. EMBO Journal 2:2341–2348
    [Google Scholar]
  37. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114
    [Google Scholar]
  38. Seed B., Sheen J.-Y. 1988; A simple phase-extraction assay for chloramphenicol acetyltransferase activity. Gene 67:271–277
    [Google Scholar]
  39. Stoler M. H., Wolinsky S. M., Whitbeck A., Broker T. R., Chow L. T. 1989; Differentiation-linked human papillomavirus types 6 and 11 transcription in genital condylomata revealed by in situ hybridization with message-specific RNA probes. Virology 172:331–340
    [Google Scholar]
  40. Thierry F., Yaniv M. 1987; The BPV-1-E2 transacting protein can be either an activator or a repressor of the HPV-18 regulatory region. EMBO Journal 6:3391–3397
    [Google Scholar]
  41. Thierry F., Spyrou G., Yaniv M., Howley P. 1992; Two AP-1 sites binding JunB are essential for human papillomavirus type 18 transcription in keratinocytes. Journal of Virology 66:3740–3748
    [Google Scholar]
  42. Ushikai M., Lace M. J., Yamakawa Y., Kono M., Anson J., Ishiji T., Parkkinen S., Wicker N., Valentine M.-E., Davidson I., Turek L. P., Haugen T. H. 1994; Trans activation by the full-length E2 proteins of human papillomavirus type 16 and bovine papillomavirus type 1 in vitro and in vivo: cooperation with activation domains of cellular transcription factors. Journal of Virology 68:6655–6666
    [Google Scholar]
  43. Van Ranst M. A., Tachezy R., Burk R. D. 1994; Human papillomavirus nucleotide sequences: what’s in stock?. Papillomavirus Report 5:65–75
    [Google Scholar]
  44. Wu Y.-J., Parker M., Binder N. E., Beckett M. A., Sinard J. H., Griffiths C. T., Rheinwald J. G. 1982; The mesothelial keratins: a new family of cytoskeleton proteins identified in cultured mesothelial cells and nonkeratinizing epithelia. Cell 31:693–703
    [Google Scholar]
  45. Wu T.-C., Mounts P. 1988; Transcriptional regulatory elements in the noncoding region of human papillomavirus type 6. Journal of Virology 62:4722–4729
    [Google Scholar]
  46. Yu Y.-T., Manley J. L. 1986; Structure and function of the SI nuclease-sensitive site in the adenovirus late promoter. Cell 45:743–751
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-4-827
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-827
Loading

Data & Media loading...

Most cited Most Cited RSS feed