1887

Abstract

Papillomavirus DNA replication is primarily dependent upon two viral gene products, E1 and E2. Work with bovine papillomavirus has shown that the E2 protein can bind directly to the E1 protein and enhance the binding of E1 to the viral origin of replication. However, little is known about the mechanism of interaction between E1 and E2 proteins. In this study we have analysed in detail the association between human papillomavirus type 16 (HPV-16) E1 and E2 proteins. Using a purified glutathione -transferase-HPV-16 E1 fusion protein from and E2 proteins produced by transcription-translation, we have developed a rapid and simple method for investigating the association between E1 and E2 . The binding of E2 to E1 was found to be dependent on sequences in the N-terminal activation domain of the E2 protein. Truncated forms of E2, including a putative repressor form of E2 encoding the DNA binding domain, failed to associate with E1 in this assay. The region of E2 required for efficient binding to E1 was then localized using mutants in the activation domain of E2. These results demonstrated that only a short region of E2 was required for association with E1. This region of E2 was found to be highly conserved amongst all papillomaviruses, suggesting a conservation of E2 function and a common mechanism of interaction between these virally encoded proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-819
1995-04-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040819.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-819&mimeType=html&fmt=ahah

References

  1. Androphy E. J., Hubbert N. L., Schiller J. T., Lowy D. R. 1987a; Identification of the HPV 18 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO Journal 6:989–992
    [Google Scholar]
  2. Androphy E. J., Lowy D. R., Schiller J. T. 1987b; Bovine papillomavirus E2 trans-activating gene product binds to specific sites in the papillomavirus DNA. Nature 325:70–73
    [Google Scholar]
  3. Boshart M., Gissmann L., Ikenberg H., Kleinheinz A., Scheurlen W., zur Hausen H. 1984; A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO Journal 3:1151–1157
    [Google Scholar]
  4. Banks L., Spence P., Androphy E., Hubbert N., Matlashewski G., Murray A., Crawford L. 1987; Identification of the human papillomavirus type 18 E6 polypeptide in cells derived from human cervical carcinomas. Journal of General Virology 68:1351–1359
    [Google Scholar]
  5. Blitz I. L., Laimins L. A. 1991; The 68-kilodalton El protein of bovine papillomavirus is a DNA binding phosphoprotein which associates with the E2 transcription factor in vitro . Journal of Virology 65:649–656
    [Google Scholar]
  6. Bouvard V., Storey A., Pim D., Banks L. 1994; Characterisation of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO Journal5451–5459
    [Google Scholar]
  7. Bream G. L., Ohmstede C.-A., Phelps W. C. 1993; Characterisation of human papillomavirus type 11 E1 and E2 proteins expressed in insect cells. Journal of Virology 67:2655–2663
    [Google Scholar]
  8. Chiang C.-M., Broker T., Chow L. T. 1991; An E1M ^ E2C fusion protein encoded by human papillomavirus type 11 is a sequence specific transcription repressor. Journal of Virology 65:3317–3329
    [Google Scholar]
  9. Chiang C.-M., Dong G., Broker T. R., Chow L. T. 1992a; Control of human papillomavirus type 11 origin of replication by the E2 family of transcription regulatory proteins. Journal of Virology 66:5224–5231
    [Google Scholar]
  10. Chiang C.-M., Ustav A., Stenlund A., Ho T. F., Broker T. R., Chow L. T. 1992b; Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proceedings of the National Academy of Sciences, USA 89:5799–5803
    [Google Scholar]
  11. Doorbar J., Parton A., Hartley K., Banks L., Crook T., Stanley M., Crawford L. 1990; Detection of novel splicing patterns in a HPV16-containing keratinocyte cell line. Virology 178:254–262
    [Google Scholar]
  12. Dürst M., Gissmann L., Ikenberg H., zur Hausen H. 1983; A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proceedings of the National Academy of Sciences, USA 80:3812–3815
    [Google Scholar]
  13. De Villiers E. M. 1989; Heterogeneity of the human papillomavirus group. Journal of Virology 63:4898–4903
    [Google Scholar]
  14. Del Vecchio A. M., Romanczuk H., Howley P. M., Baker C. C. 1992; Transient replication of human papillomavirus DNAs. Journal of Virology 66:5949–5958
    [Google Scholar]
  15. Eckhart W. 1990; Polyomaviridae and their replication. In Virology 2nd edn vol 2 pp 1593–1607 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  16. Gauthier J.-M., Dostatni N., Lusky M., Yaniv M. 1991; Two DNA-bound E2 dimers are required for strong transcriptional activation and for cooperation with cellular factors in most cells. New Biologist 3:498–509
    [Google Scholar]
  17. Giri I., Yaniv M. 1988; Structural and mutational analysis of E2 trans-activating proteins of papillomaviruses reveals three distinct functional domains. EMBO Journal 7:2823–2829
    [Google Scholar]
  18. Holt S. E., Schuller G., Wilson V. G. 1994; DNA binding specificity of the bovine papillomavirus E1 protein is determined by sequences contained within an 18-base-pair inverted repeat element at the origin of replication. Journal of Virology 68:1094–1102
    [Google Scholar]
  19. Knight J., Li R., Botchan M. 1991; The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops. Proceedings of the National Academy of Sciences, USA 83:3204–3208
    [Google Scholar]
  20. Lambert P. F., Spalholz B. A., Howley P. M. 1987; A transcriptional repressor encoded by BPV-1 shares a common carboxy-terminal domain with the E2 transactivator. Cell 50:69–78
    [Google Scholar]
  21. Le Moal M., Yaniv M., Thierry F. 1994; The bovine papillomavirus type 1 (BPV1) replication protein E1 modulates transcriptional activation by interacting with BPV1 E2. Journal of Virology 68:1085–1093
    [Google Scholar]
  22. Lusky M., Fontaine E. 1991; Formation of the complex of bovine papillomavirus E1 and E2 proteins is modulated by E2 phosphorylation and depends upon sequences in the carboxyl terminus of E1. Proceedings of the National Academy of Sciences, USA 88:6363–6367
    [Google Scholar]
  23. Mohr I. J., Clark R., Sun S., Androphy E. J., MacPherson P., Botchan M. R. 1990; Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250:1694–1699
    [Google Scholar]
  24. Phelps W. C., Howley P. M. 1987; Transcriptional transactivation by the human papillomavirus type 16 E2 gene product. Journal of Virology 61:1630–1638
    [Google Scholar]
  25. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114
    [Google Scholar]
  26. Seo Y.-S., Muller F., Lusky M., Hurwitz J. 1993; Bovine papillomavirus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proceedings of the National Academy of Sciences, USA 90:702–706
    [Google Scholar]
  27. Smith D. B., Johnson K. S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40
    [Google Scholar]
  28. Smotkin D., Wettstein F. O. 1986; Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences, USA 83:4680–4684
    [Google Scholar]
  29. Storey A., Greenfield I., Banks L., Pim D., Crook T., Crawford L., Stanley M. 1992; Lack of immortalizing activity of a human papillomavirus type 16 variant DNA with a mutation in the E2 gene isolated from normal human cervical keratinocytes. Oncogene 1:459–165
    [Google Scholar]
  30. Sun S., Thorner L., Lentz M., MacPherson P., Botchan M. 1990; Identification of a 68-kilodalton nuclear ATP-binding phosphoprotein encoded by bovine papillomavirus type 1. Journal of Virology 64:5093–5105
    [Google Scholar]
  31. Sverdrup F., Kahn S. A. 1994; Replication of human papillomavirus (HPV) DNAs supported by the HPV type 18 E1 and E2 proteins. Journal of Virology 68:505–509
    [Google Scholar]
  32. Ustav M., Stenlund A. 1991; Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO Journal 10:449–457
    [Google Scholar]
  33. van den Brule A. J. C., Claas H. C. J., du Maine M., Melchers W. J., Helmerhorst T., Quint W. G., Lindeman J., Meuer C. J. L. M., Walbloomers J. M. M. 1989; Use of anti-contamination primers in the polymerase chain reaction for the detection of human papilloma virus genotypes in cervical scrapes and biopsies. Journal of Medical Virology 19:20–27
    [Google Scholar]
  34. Wilson V. G., Ludes-Meyers J. 1991; A bovine papillomavirus E1-related protein binds specifically to bovine papillomavirus DNA. Journal of Virology 65:5314–5322
    [Google Scholar]
  35. Yang L., Li R., Mohr I. J., Clark R., Botchan M. R. 1991; Activation of BPV-1 replication in vitro by the transcription factor E2. Nature 353:628–632
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-4-819
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-819
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error