1887

Abstract

The six Epstein—Barr virus (EBV) nuclear antigen proteins (EBNA-1–6) show characteristic size variations between different virus isolates; this is a feature that has been used to identify the source of virus isolates in epidemiological studies (Ebnotyping). We have now studied the correlation between restriction fragment length polymorphisms (RFLPs) within exons coding for the EBNAs and the molecular masses of the respective proteins. The B95-8 EBV strain was used as the prototype virus. The variation in apparent molecular mass of EBNA-1, -3 and -6 correlated positively with the size of RFLP coding for repeat sequences in these polypeptides. For EBNA-2, no correlation between apparent molecular mass and length of the repetitive sequences was found. The EBNA-4 protein showed virtually no variation in apparent molecular mass and RFLP size across the repeat sequence. Based on the strong correlation between apparent molecular mass and RFLP size for EBNA-6, we developed an EBNA-6 PCR assay that discriminated between different isolates of EBV. This assay offers the advantage of EBV characterization using uncultured material (e.g. throat washings, blood or biopsies), thus avoiding the selection against poorly transforming strains that occurs during establishment of lymphoblastoid cell lines required for Ebnotyping at the protein level.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-779
1995-04-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040779.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-779&mimeType=html&fmt=ahah

References

  1. Adldinger H. K., Delius H., Fresse U., Clark J., Bornkamm G. W. 1985; A putative transforming gene of Jijoye virus differs from that of Epstein-Barr virus prototypes. Virology 141:221–234
    [Google Scholar]
  2. Albert J., Fenyö E-M. 1990; Simple, sensitive, and specific detection of human immunodeficiency virus type 1 in clinical specimens by polymerase chain reaction with nested primers. Journal of Clinical Microbiology 28:1560–1564
    [Google Scholar]
  3. De Campos-Lima P.-O., Gavioli R., Zhang Q.-J., Wallace L. E., Dolcetti R., Rowe M., Rickinson A. B., Masucci M. G. 1993; HLA-A11 epitope loss isolates of Epstein–Barr virus from a highly All+ population. Science 260:98–100
    [Google Scholar]
  4. Dillner J., Kallin B. 1988; The Epstein-Barr virus-encoded proteins. Advances in Cancer Research 50:95–151
    [Google Scholar]
  5. Ernberg I., Andersson J. 1986; Acyclovir efficiently inhibits oropharyngeal excretion of Epstein–Barr virus in patients with acute infectious mononucleosis. Journal of General Virology 67:2267–3372
    [Google Scholar]
  6. Ernberg I., Kallin B., Dillner J., Falk K., Ehlin-Henriksson B., Hammarskjöld M., Klein G. 1986; Lymphoblastoid cell lines and Burkitt lymphoma derived cell lines differ in the expression of a second Epstein-Barr virus encoded nuclear antigen. International Journal of Cancer 38:729–737
    [Google Scholar]
  7. Ernberg I., Danell E., Gratama J. W., Oosterveer M. A. P., Klein G. 1989; Molecular weight variation of EBNAs as a means to identify different Epstein–Barr virus isolates (EBNOtyping). In Epstein–Barr Virus and Human Disease pp 341–347 Edited by Ablashi D. V. Clifton, NJ: The Humana Press;
    [Google Scholar]
  8. Falk K., Ernberg I. 1993; An origin of DNA-replication (oriP) in highly methylated episomal Epstein–Barr virus DNA localizes to a 4 kb unmethylated island. Virology 195:608–615
    [Google Scholar]
  9. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  10. Friis A. M. C., Gratama J. W., Oosterveer M. A. P., Ernberg I. 1995; Epstein–Barr virus variants spontaneously generated by in vivo heterologous recombination in the EBNA 1 coding gene BKRF 1. Journal of Medical Virology (in press)
    [Google Scholar]
  11. Gratama J. W., Oosterveer M. A. P., Zwaan F. E., Lepoutre J., Klein G., Ernberg I. 1988; Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: implications for sites of latency. Proceedings of the National Academy of Sciences, USA 85:8693–8696
    [Google Scholar]
  12. Gratama J. W., Oosterveer M. A. P., Klein G., Ernberg I. 1990; EBNA size polymorphism can be used to trace Epstein–Barr virus spread within families. Journal of Virology 64:4703–4708
    [Google Scholar]
  13. Gratama J. W., Lennette E. T., Lönnqvist B., Oosterveer M. A. P., Klein G., Ringde’n O., Ernberg I. 1992; Detection of multiple Epstein–Barr viral strains in allogeneic bone marrow transplant recipients. Journal of Medical Virology 37:39–47
    [Google Scholar]
  14. Gratama J. W., Oosterveer M. A. P., Weimar W., Sintnicolaas K., Sizoo W., Bolhuis R. L. H., Ernberg I. 1994; Detection of multiple “EBNotypes” in individual Epstein–Barr virus (EBV) carriers following lymphocyte transformation by EBV derived from peripheral blood and oropharynx. Journal of General Virology 75:85–94
    [Google Scholar]
  15. Hennessy K., Kieff E. 1983; One of two Epstein–Barr virus nuclear antigens contains a glycine–alanine copolymer domain. Proceedings of the National Academy of Sciences, USA 80:5665–5669
    [Google Scholar]
  16. Hennessy K., Kieff E. 1985; A second nuclear protein is encoded by Epstein–Barr virus in latent infection. Science 227:1238–1240
    [Google Scholar]
  17. Hennessy K., Heller M., van Santen , Kieff E. 1983; Simple repeat array in Epstein-Barr virus DNA encodes part of the Epstein–Barr nuclear antigen. Science 220:1396–1398
    [Google Scholar]
  18. Klein G., Giovanella B., Westman A., Stehlin J. S., Mumford D. 1975; An EBV-genome negative cell line established from an American Burkitt-lymphoma: receptor characteristics, EBV-infecta-bility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5:319–334
    [Google Scholar]
  19. Kyaw M. T., Hurren L., Evans L., Moss D. J., Cooper D. A., Benson E., Esmore D., Sculley T. B. 1993; Expression of B-type Epstein-Barr virus in HIV-infected patients and cardiac transplant recipients. In The Epstein–Barr Virus and Associated Diseases Edited by Tursz T., Pagano J. S., Ablashi G., de Thé G., Lenoir G., Pearson G. B. London: Colloque INSERM/ John Libbey Eurotext Ltd; 225699–704
    [Google Scholar]
  20. Lin J.-C., Lin S.-C., De B. K., Chan W.-P., Evatt B. L. 1993; Precision of genotyping of Epstein–Barr virus by polymerase chain reaction using three gene loci (EBNA-2, EBNA-3C, and EBER): predominance of type A virus associated with Hodgkin’s disease. Blood 81:3372–3381
    [Google Scholar]
  21. Linnemann C. C. Jr, Buchman T. G., Light I. J., Ballard J. L., Roizman B. 1978; Transmission of herpes simplex virus type 1 in a nursery for the newborn identification of viral isolates by D.N.A. “fingerprinting”. Lancet i:964–966
    [Google Scholar]
  22. Lozzio C. B., Lozzio B. B. 1975; Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334
    [Google Scholar]
  23. Menezes J., Leibold W., Klein G., Clements G. 1975; Establishment and characterization of an Epstein–Barr virus (EBV) negative lymphoblastoid B-cell line (BJAB) from an exceptional EBV genome negative African Burkitt’s lymphoma. Biomedicine 22:276–284
    [Google Scholar]
  24. Miller G., Lipman M. 1973; Release of infectious Epstein–Barr virus by transformed marmoset leukocytes. Proceedings of the National Academy of Sciences, USA 70:190–194
    [Google Scholar]
  25. Mueller-Lantzsch N., Lenoir G. M., Sauter M., Takaki K., Bechet J. M., Kuklik-Roos C., Wunderlich D., Bornkamm G. W. 1985; Identification of the coding region for a second Epstein–Barr virus nuclear antigen (EBNA 2) by transfection of cloned DNA fragments. EM BO Journal 4:1805–1811
    [Google Scholar]
  26. Pereira L., Cassai E., Honess R. W., Roizman B., Terni M., Nahmias A. 1976; Variability in the structural polypeptides of herpes simplex virus 1 strains: potential application in molecular epidemiology. Infection and Immunity 13:211–220
    [Google Scholar]
  27. Petti L., Sample C., Kieff E. 1990; Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology 176:563–574
    [Google Scholar]
  28. Ricksten A., Kallin B., Alexander H., Dillner J., Fåhraeus R., Klein G., Lerner R., Rymo L. 1988; Bam HI E region of the Epstein–Barr virus genome encodes three transformation-associated nuclear proteins. Proceedings of the National Academy of Sciences, USA 85:995–999
    [Google Scholar]
  29. Rowe M., Gregory C. 1989; Epstein–Barr virus and Burkitt’s lymphoma. Advances in Viral Oncology 8:237–259
    [Google Scholar]
  30. Rowe D., Heston L., Metlay J., Miller G. 1985; Identification and expression of a nuclear antigen from the genomic region of the Jijoye strain of Epstein–Barr virus that is missing in its nonimmortalizing deletion mutant, P3HR-1. Proceedings of the National Academy of Sciences, USA 82:7429–7433
    [Google Scholar]
  31. Rowe D. T., Rowe M., Evan G. I., Wallace L. E., Farrell P. J., Rickinson A. B. 1986; Restricted expression of EBV latent genes and T-lymphocyte-detected membrane antigen in Burkitt’s lymphoma cells. EMBO Journal 5:2599–2607
    [Google Scholar]
  32. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987; Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO Journal 6:2743–2751
    [Google Scholar]
  33. Rowe M., Young L. S., Cadwallader K., Petti L., Kieff E., Rickinson A. 1989; Distinction between Epstein–Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. Journal of Virology 63:1031–1039
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor;
    [Google Scholar]
  35. Sample J., Young L., Martin B., Chatman T., Kieff E., Rickinson A., Kieff E. 1990; Epstein–Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. Journal of Virology 64:4084–4092
    [Google Scholar]
  36. Sculley T. B., Moss D., Hazelton R. A., Pope J. H. 1987; Detection of Epstein–Barr virus strain variants in lymphoblastoid cell lines ‘spontaneously’ derived from patients with rheumatoid arthritis, infectious mononucleosis and normal controls. Journal of General Virology 68:2069–2078
    [Google Scholar]
  37. Sculley T. B., Apolloni A., Hurren L., Moss D. J., Cooper D. A. 1990; Coinfection with A-type and B-type Epstein–Barr virus in human immunodeficiency virus-positive subjects. Journal of Infectious Diseases 162:643–648
    [Google Scholar]
  38. Sixbey J. W., Shirley P., Chesney P. J., Buntin D. M. 1989; Detection of a second widespread strain of Epstein–Barr virus. Lancet ii:761–765
    [Google Scholar]
  39. Yao Q. Y., Rowe M., Martin B., Young L. S., Rickinson A. B. 1991; The Epstein–Barr virus carrier state: dominance of a single growth-transforming isolate in the blood and in the oropharynx of healthy virus carriers. Journal of General Virology 72:1579–1590
    [Google Scholar]
  40. Young L. S., Yao Q. Y., Rooney C. M., Sculley T. B., Moss D. J., Rupani H., Laux G., Bornkamm G. W., Rickinson A. B. 1987; New type B isolates of Epstein–Barr virus from Burkitt’s lymphoma and from normal individuals in endemic areas. Journal of General Virology 68:2853–2862
    [Google Scholar]
  41. Zimber U., Adldinger H. K., Lenoir G. M., Vuillaume M., Knebel-Doeberitz M. V., Laux G., Desgranges C., Wittman P., Freese U. K., Schneider U., Bornkamm G. 1986; Geographical prevalence of two types of Epstein–Barr virus. Virology 154:56–66
    [Google Scholar]
  42. Zimber-Strobl U., Suentzenich K.-O., Laux G., Eick D., Cordier M., Calender A., Billaud M., Lenoir G. M., Bornkamm G.-W. 1991; Epstein–Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. Journal of Virology 65:415–423
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-76-4-779
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-779
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error