1887

Abstract

The Epstein—Barr virus (EBV) latent membrane protein 1 (LMP-1) is essential for EBV-induced immortalization of human primary B cells, transforms rodent fibroblasts and induces the up-regulation of several B cell activation markers when transiently expressed in primary B cells. The biochemical function of LMP-1 is unclear and limited information is available on the involvement of different domains of the protein in B cell activation. The present study describes the characterization of LMP-1 N- and C-terminal deletion mutants in terms of their cell surface distribution and ability to induce activation markers in primary human B cells and in the type I Burkitt’s lymphoma cell line DG75. The C-terminal deletion mutant was detected by immunofluorescence via antibodies targeted against an eight amino acid FLAG epitope substituted for the entire predicted cytoplasmic C-terminal domain. Our findings show that N-terminal deletion mutants of LMP-1 are unable to attain their usual patched distribution on the plasma membrane but retain the ability to activate B cells. In contrast, the C-terminal deletion mutant shows the same patched cell surface distribution as wild-type LMP-1 but is unable to activate B cells. The patched distribution of LMP-1 in the plasma membrane is therefore not sufficient nor necessary for the induction of B cell activation and the results rule out patching as a direct mechanism in LMP-1-induced activation. This is the first study addressing the role of the LMP-1 C-terminal domain in lymphocytes and our results show that this domain is essential for B cell activation and therefore likely to be important for the early events of B cell immortalization by EBV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-767
1995-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040767.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-767&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos I., Hummel M., Finn T., Tiemann M., Korbjuhn P., Dimmler C., Gatter K., Dallenbach F., Parwaresch M. R., Stein H. 1992; Heterogeneous Epstein– Barr virus infection patterns in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood 80:1804–1812
    [Google Scholar]
  2. Baichwal V. R., Sugden B. 1987; Posttranslational processing of an Epstein–Barr virus–encoded membrane protein expressed in cells transformed by Epstein-Barr virus. Journal of Virology 61:866–875
    [Google Scholar]
  3. Baichwal V. R., Sugden B. 1989; The multiple membrane-spanning segments of the BNLF-1 oncogene from Epstein-Barr virus are required for transformation. Oncogene 4:67–74
    [Google Scholar]
  4. Chen C.-L., Sadler R. H., Walling D. M., Su I.-J., Hsieh H.-C., Raab-Traub N. 1993; Epstein-Barr virus (EBV) gene expression in EBV-positive peripheral T-cell lymphomas. Journal of Virology 67:6303–6308
    [Google Scholar]
  5. Ernberg I., Falk K., Minarovits J., Busson P., Tursz T., Masucci M. G., Klein G. 1989; The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr virus. Journal of General Virology 70:2989–3002
    [Google Scholar]
  6. Fahraeus R., Fu H. L., Ernberg I., Finke J., Row M., Klein G., Falk K., Nilsson E., Yadav M., Busson P., Tursz T., Kallin B. 1988; Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. International Journal of Cancer 42:329–338
    [Google Scholar]
  7. Fennewald S., van Stanten V., Kieff E. 1984; Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. Journal of Virology 51:411–419
    [Google Scholar]
  8. Hammerschmidt W., Sugden B., Baichwal V. R. 1989; The transforming domain alone of the latent membrane protein of Epstein-Barr virus is toxic to cells when expressed at high levels. Journal of Virology 63:2469–2475
    [Google Scholar]
  9. He Q., Beyers A. D., Barclay A. N., Williams A. F. 1988; A role in transmembrane signaling for the cytoplasmic domain of the CD2 T lymphocyte surface antigen. Cell 54:979–984
    [Google Scholar]
  10. Henderson S., Rowe M., Gregory C., Croom-Crater D., Wang F., Longnecker R., Kieff E., Rickinson A. 1991; Induction of bel-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65:1107–1115
    [Google Scholar]
  11. Hennessy K., Fennewald S., Hummel M., Cole T., Kieff E. 1984; A membrane protein encoded by Epstein-Barr virus in latent growth-transforming infection. Proceedings of the National Academy of Sciences, USA 81:7207–7211
    [Google Scholar]
  12. Herbst H., Dallenbach F., Hummel M., Niedobitek G., Pileri S., Muller-Lantsch N., Stein H. 1991; Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proceedings of the National Academy of Sciences, USA 88:4766–4770
    [Google Scholar]
  13. Hopp T. H., Prickett K. S., Price V. L., Libby R. T., March C. J., Cerreti D. P., Urdal D. L., Conlon P. J. 1988; A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6:1204–1210
    [Google Scholar]
  14. Izumi K. M., Kaye K. M., Kieff E. D. 1994; Epstein-Barr virus recombinant molecular genetic analysis of the LMP1 amino-terminal cytoplasmic domain reveals a probable structural role, with no component essential for primary B-lymphocyte growth transformation. Journal of Virology 68:4369–4376
    [Google Scholar]
  15. Kaye K. M., Izumi K. M., Kieff E. 1993; Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proceedings of the National Academy of Sciences, USA 90:9150–9154
    [Google Scholar]
  16. Kieff E., Liebowitz D. 1990; Epstein-Barr virus and its replication. In Virology pp 1889–1920 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  18. Liebowitz D., Wang D., Kieff E. 1986; Orientation and patching of the latent infection membrane protein encoded by Epstein–Barr virus. Journal of Virology 58:233–237
    [Google Scholar]
  19. Liebowitz D., Kopan R., Fuchs E., Sample J., Kieff E. 1987; An Epstein-Barr virus transforming protein associates with vimentin in lymphocytes. Molecular and Cellular Biology 7:2299–2308
    [Google Scholar]
  20. Liebowitz D., Mannick J., Takada K., Kieff E. 1992; Phenotypes of Epstein-Barr virus LMP1 deletion mutants indicate transmembrane and amino-terminal cytoplasmic domains necessary for effects in B-lymphoma cells. Journal of Virology 66:4612–4616
    [Google Scholar]
  21. Mann K. P., Thorley-Lawson D. 1987; Posttranslational processing of the Epstein-Barr virus-encoded p63/LMP protein. Journal of Virology 61:2100–2108
    [Google Scholar]
  22. Mann K. P., Staunton D., Thorley-Lawson D. 1985; Epstein-Barr virus-encoded protein found in plasma membranes of transformed cells. Journal of Virology 55:710–720
    [Google Scholar]
  23. Martin J., Sugden B. 1991; Transformation by the oncogenic latent membrane protein correlates with its rapid turnover, membrane localization, and cytoskeletal association. Journal of Virology 65:3246–3258
    [Google Scholar]
  24. Martin J. M., Veis D., Korsmeyer J., Sugden B. 1993; Latent membrane protein of Epstein-Barr virus induces cellular phenotype independently of expression of Bcl-2. Journal of Virology 67:5269–5278
    [Google Scholar]
  25. Moorthy R. K., Thorley-Lawson D. A. 1993a; All three domains of the Epstein-Barr virus-encoded latent membrane protein LMP1 are required for transformation of Rat-1 fibroblasts. Journal of Virology 67:1638–1646
    [Google Scholar]
  26. Moorthy R. K., Thorley-Lawson D. A. 1993b; Biochemical, genetic, and functional analyses of the phosphorylation sites on the Epstein-Barr virus-encoded oncogenic latent membrane protein LMP-1. Journal of Virology 67:2637–2645
    [Google Scholar]
  27. Ohno H., Nakamura T., Yagita H., Okamura K., Taniguchi M., Saito T. 1991; Induction of negative signal through CD2 during antigen-specific T cell activation. Journal of Immunology 147:2100–2106
    [Google Scholar]
  28. Peng M., Lundgren E. 1992; Transient expression of the Epstein-Barr virus LMP1 gene in human primary B cells induces cellular activation and DNA synthesis. Oncogene 7:1775–1782
    [Google Scholar]
  29. Peng M., Lundgren E. 1993; Transient expression of the Epstein-Barr virus LMP1 gene in B-cell chronic lymphocytic leukemia cells, T cells, and hematopoietic cell lines: cell-type-independent induction of CD23, CD21, and ICAM-1. Leukemia 7:104–112
    [Google Scholar]
  30. Pilon M., Gullberg M., Lundgren E. 1991; Transient expression of the CD2 cell surface antigen as a sortable marker to monitor high frequency transfection of human primary B cells. Journal of Immunology 146:1047–1051
    [Google Scholar]
  31. Rowe M., Rooney C. M., Edwards C. F., Lenoir G. M., Rickinson A. B. 1986; Epstein-Barr virus status and tumor cell phenotype in sporadic Burkitts lymphoma. International Journal of Cancer 37:367–373
    [Google Scholar]
  32. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987a; Differences in B cell growth phenotype reflects novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO Journal 6:2743–2751
    [Google Scholar]
  33. Rowe M., Evans H. S., Young L. S., Hennessy K., Kieff E., Rickinson A. B. 1987b; Monoclonal antibodies to the latent membrane protein of Epstein-Barr virus reveal heterogeneity of the protein and inducible expression in virus-transformed cells. Journal of General Virology 68:1575–1586
    [Google Scholar]
  34. Rowe M., Peng-Pilon M., Huen D. S., Hardy R., Croom-Carter D., Lundgren E., Rickinson A. B. 1994; The induction of Bcl-2 by the Epstein-Barr virus LMP1 protein is a delayed response relative to surface marker and nf-kb activation. Journal of Virology (in press)
    [Google Scholar]
  35. Su I.-J., Hsieh H.-C., Lin K.-H., Uen W.-C., Kao C.-L., Chen C.-J., Cheng A.-L., Kadin M. E., Chen J.-Y. 1991; Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathological and molecular analysis. Blood 77:799–808
    [Google Scholar]
  36. Sugden B. 1989; An intricate route to immortality. Cell 57:5–7
    [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76:4350–4354
    [Google Scholar]
  38. Wang D., Liebowitz D., Kieff E. 1985; An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840
    [Google Scholar]
  39. Wang D., Liebowitz D., Wang F., Gregory C., Rickinson A., Larson R., Springer T., Kieff E. 1988; Epstein-Barr virus latent membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. Journal of Virology 62:4173–4184
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-4-767
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-767
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error