1887

Abstract

A group of cross-hybridizing DNA segments contained within the RI restriction fragments U′, X and J of a Vero cell-adapted strain (BA71V) of African swine fever virus (ASFV) were mapped and sequenced. Analysis of the nucleotide sequence revealed the presence of a set of long internal repeated sequences composed of five types of tandemly repeat units of about 200 bp. These tandem repeats contain a G-rich core of 10–14 nucleotides surrounded by regions with a high A+T content distributed in oligo(dA).oligo(dT) tracts. Next to the repeated sequences we detected two related open reading frames that are members of a new multigene family (multigene family 300). Comparison of DNA sequences from several virus isolates indicated that this region undergoes frequent rearrangements leading to either duplications or deletions of the repeat units. These ASFV repeated sequences share similarities with chromosomal α satellite DNA, the scaffold-associated region and satellite III of . Similar tandemly repeated sequences have not been described in other viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-4-729
1995-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/4/JV0760040729.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-4-729&mimeType=html&fmt=ahah

References

  1. Adachi Y., Luke M., Laemmli U. K. 1991; Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell 64:137–148
    [Google Scholar]
  2. Almazán F., Rodríguez J. M., Andrés G., Pérez R., Viñuela E., Rodríguez J. F. 1992; Transcriptional analysis of multigene family 110 of African swine fever virus. Journal of Virology 66:6655–6667
    [Google Scholar]
  3. Almazán F., Rodríguez J. M., Angulo A., Viñuela E., Ridríguez J. F. 1993; Transcriptional mapping of a late gene coding for the pl2 attachment protein of African swine fever virus. Journal of Virology 67:553–556
    [Google Scholar]
  4. Almendral J. M., Almazán F., Blasco R., Viñuela E. 1990; Multigene families in African swine fever virus: family 110. Journal of Virology 64:2064–2072
    [Google Scholar]
  5. Angulo A., Viñuela E., Alcamí A. 1992; Comparison of the sequence of the gene encoding African swine fever virus attachment protein pl2 from field virus isolates and viruses passaged in tissue culture. Journal of Virology 66:3869–3872
    [Google Scholar]
  6. Bairoch A. 1991; PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Research 19: (Suppl.) 2241–2245
    [Google Scholar]
  7. Baroudy B. M., Venkatesan S., Moss B. 1982; Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28:315–324
    [Google Scholar]
  8. Berg J. M. 1986a; Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–487
    [Google Scholar]
  9. Berg J. M. 1986b; More metal-binding fingers. Nature 319:264–265
    [Google Scholar]
  10. Blasco R., Agüero M., Almendral J. M., Viñuela E. 1989a; Variable and constant regions in African swine fever virus DNA. Virology 168:330–338
    [Google Scholar]
  11. Blasco R., de la Vega I., Almazán F., Agüero M., Viñuela E. 1989b; Genetic variation of African swine fever virus: variable regions near the ends of the viral DNA. Virology 173:251–257
    [Google Scholar]
  12. Bolshoy A., McNamara P., Harrington R. E., Trifonov E. N. 1991; Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proceedings of the National Academy of Sciences, USA 88:2312–2316
    [Google Scholar]
  13. Brutlag D. L. 1980; Molecular arrangement and evolution of heterochromatic DNA. Annual Review of Genetics 14:121–144
    [Google Scholar]
  14. Carrascosa A. L., del Val M., Santaren J. F., Viñuela E. 1985; Purification and properties of African swine fever virus. Journal of Virology 54:337–344
    [Google Scholar]
  15. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  16. Costa J. V. 1990; African swine fever virus. In Molecular Biology of Iridoviruses pp 247–270 Edited by Darai G. Boston: Kluwer Academic Publishers;
    [Google Scholar]
  17. Crothers D. M., Haran T. E., Nadeau J. G. 1990; Intrinsically bent DNA. Journal of Biological Chemistry 265:7093–7096
    [Google Scholar]
  18. de la Vega I., Viñuela E., Blasco R. 1990; Genetic variation and multigene families in African swine fever virus. Virology 179:234–246
    [Google Scholar]
  19. de la Vega I., González A., Blasco R., Calvo V., Viñuela E. 1994; Nucleotide sequence and variability of the inverted terminal repetitions of African swine fever virus DNA. Virology 201:152–156
    [Google Scholar]
  20. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  21. DiNardo S., Voelkel K., Sternglanz R. 1984; DNA topo-isomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proceedings of the National Academy of Sciences, USA 81:2616–2620
    [Google Scholar]
  22. Dingwall C., Laskey R. A. 1986; Protein import into the cell nucleus. Annual Review of Cell Biology 2:367–390
    [Google Scholar]
  23. Dixon L. K., Wilkinson P. J. 1988; Genetic diversity of African swine fever virus isolates from soft ticks (Ornithodoros moubata) inhabiting warthog burrows in Zambia. Journal of General Virology 69:2981–2993
    [Google Scholar]
  24. Dixon L. K., Bristow C., Wilkinson P. J., Sumption K. J. 1990; Identification of a variable region of the African swine fever virus genome that has undergone separate DNA rearrangements leading to expansion of minisatellite-like sequences. Journal of Molecular Biology 216:677–688
    [Google Scholar]
  25. Dixon L. K., Baylis S. A., Vydelingum S., Twigg S. R. F., Hammond J. M., Hingamp P. M., Bristow C., Wilkinson P. J., Smith G. L. 1993; African swine fever virus genome content and variability. Archives of Virology 7: (Suppl.) 185–199
    [Google Scholar]
  26. Escribano J. M., Alcaraz C., Ruíz-Gonzalvo F. 1993; New perspectives in African swine fever virus protection. In Coordination of Agricultural Research African Swine Fever pp 113–129 Edited by Galo A. Luxembourg: Commission of the European Communities;
    [Google Scholar]
  27. Enjuanes L., Carrascosa A. L., Moreno M. A., Viñuela E. 1976; Titration of African swine fever (ASF) virus. Journal of General Virology 32:471–477
    [Google Scholar]
  28. Fischer M., Schnitzler P., Scholz J., Rosen Wolff A., Delius H., Darai G. 1988; DNA nucleotide sequence analysis of the Pvull DNA fragment L of the genome of insect iridescent virus type 6 reveals a complex cluster of multiple tandem, overlapping, and interdigitated repetitive DNA elements. Virology 167:497–506
    [Google Scholar]
  29. Frankel A. D., Bredt D. S., Pabo C. O. 1988; Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240:70–73
    [Google Scholar]
  30. Fuchs R. 1991; MacPattern: protein pattern searching on the Apple Macintosh. Computer Applications in the Biosciences 7:105–106
    [Google Scholar]
  31. García-Beato R., Freije J. M., Lopez Otin C., Blasco R., Viñuela E., Salas M. L. 1992; A gene homologous to topoisomerase II in African swine fever virus. Virology 188:938–947
    [Google Scholar]
  32. Gómez-Márquez J., Segade F. 1988; Prothymosin alpha is a nuclear protein. FEBS Letters 226:217–219
    [Google Scholar]
  33. González A., Talavera A., Almendral J. M., Viñuela E. 1986; Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Research 14:6835–6844
    [Google Scholar]
  34. González A., Calvo V., Almazán F., Almendral J. M., Ramírez J. C., de la Vega I., Blasco R., Viñuela E. 1990; Multigene families in African swine fever virus: family 360. Journal of Virology 64:2073–2081
    [Google Scholar]
  35. Hagerman P. J. 1990; Sequence-directed curvature of DNA. Annual Review of Biochemistry 59:755–781
    [Google Scholar]
  36. Käs E., Izaurralde E., Laemmli U. K. 1989; Specific inhibition of DNA binding to nuclear scaffolds and histone H1 by distamycin. The role of oligo(dA). oligo(dT) tracts. Journal of Molecular Biology 210:587–599
    [Google Scholar]
  37. Käs E., Laemmli U. K. 1992; In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO Journal 11:705–716
    [Google Scholar]
  38. Kuznar J., Salas M. L., Viñuela E. 1980; DNA-dependent RNA polymerase in African swine fever virus. Virology 101:169–175
    [Google Scholar]
  39. Ley V., Almendral J. M., Carbonero P., Beloso A., Viñuela E., Talavera A. 1984; Molecular cloning of African swine fever virus DNA. Virology 133:249–257
    [Google Scholar]
  40. McGeoch D. J. 1989; The genomes of the human herpesviruses: contents, relationships, and evolution. Annual Review of Microbiology 43:235–265
    [Google Scholar]
  41. Maizel J. V. J., Lenk R. P. 1981; Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proceedings of the National Academy of Sciences, USA 78:7665–7669
    [Google Scholar]
  42. Manuelidis L. 1976; Repeating restriction fragments of human DNA. Nucleic Acids Research 3:3063–3076
    [Google Scholar]
  43. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  44. Miller J., McLachlan A. D., Klug A. 1985; Repetitive zincbinding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal 4:1609–1614
    [Google Scholar]
  45. Moss B. 1990; Regulation of vaccinia virus transcription. Annual Review of Biochemistry 59:661–688
    [Google Scholar]
  46. Newport J. 1987; Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 48:205–217
    [Google Scholar]
  47. Newport J., Spann T. 1987; Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell 48:219–230
    [Google Scholar]
  48. Ortín J., Enjuanes L., Viñuela E. 1979; Cross-links in African swine fever virus DNA. Journal of Virology 31:579–583
    [Google Scholar]
  49. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, USA 85:2444–2448
    [Google Scholar]
  50. Reeder R. H. 1984; Enhancers and ribosomal gene spacers. Cell 38:349–351
    [Google Scholar]
  51. Rigby P. W., Dieckmann M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  52. Rodríguez J. M., Salas M. L., Viñuela E. 1992; Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology 186:40–52
    [Google Scholar]
  53. Rodríguez J. M., Yanez R. J., Pan R., Rodríguez J. F., Salas M. L., Viñuela E. 1994; Multigene families in African swine fever virus: family 505. Journal of Virology 68:2746–2751
    [Google Scholar]
  54. Rosenthal N., Kress M., Gruss P., Khoury G. 1983; BK viral enhancer element and a human cellular homolog. Science 222:749–755
    [Google Scholar]
  55. Salas M. L., Kuznar J., Viñuela E. 1981; Polyadenylation, methylation, and capping of the RNA synthesized in vitro by African swine fever virus. Virology 113:484–491
    [Google Scholar]
  56. Salas M. L., Rey Campos J., Almendral J. M., Talavera A., Viñuela E. 1986; Transcription and translation maps of African swine fever virus. Virology 152:228–240
    [Google Scholar]
  57. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  59. Schnitzler P., Delius H., Scholz J., Touray M., Orth E., Darai G. 1987; Identification and nucleotide sequence analysis of the repetitive DNA element in the genome of fish lymphocystis disease virus. Virology 161:570–578
    [Google Scholar]
  60. Sogo J. M., Almendral J. M., Talavera A., Viñuela E. 1984; Terminal and internal inverted repetitions in African swine fever virus DNA. Virology 133:271–275
    [Google Scholar]
  61. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  62. Travers A. A. 1989; DNA conformation and protein binding. Annual Review of Biochemistry 58:427–452
    [Google Scholar]
  63. Trifonov E. N. 1985; Curved DNA. CRC Critical Reviews in Biochemistry 19:89–106
    [Google Scholar]
  64. Uemura T., Ohkura H., Adachi Y., Morino K., Shiozaki K., Yanagida M. 1987; DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe . Cell 50:917–925
    [Google Scholar]
  65. Viñuela E. 1987; Molecular biology of African swine fever virus. In African Swine Fever pp 31–49 Edited by Becker Y. Boston: Martinus Nijhoff Publishing;
    [Google Scholar]
  66. Vydelingum S., Baylis S. A., Bristow C., Smith G. L., Dixon L. K. 1993; Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. Journal of General Virology 74:2125–2130
    [Google Scholar]
  67. Wardley R. C., Norley S. G., Martins C. V., Lawman M. J. 1987; The host response to African swine fever virus. Progress in Medical Virology 34:180–192
    [Google Scholar]
  68. Willard H. F. 1990; Centromeres of mammalian chromosomes. Trends in Genetics 6:410–416
    [Google Scholar]
  69. Witter R., Moss B. 1980; Tandem repeats within the inverted terminal repetition of vaccinia virus DNA. Cell 2:277–284
    [Google Scholar]
  70. Wu J. C., Manuelidis L. 1980; Sequence definition and organization of a human repeated DNA. Journal of Molecular Biology 142:363–386
    [Google Scholar]
  71. Yozawa T., Kutish G. F., Afonso C. L., Lu Z., Rook D. L. 1994; Two novel multigene families, 530 and 300, in the terminal variable regions of African swine fever virus genome. Virology 202:997–1002
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-4-729
Loading
/content/journal/jgv/10.1099/0022-1317-76-4-729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error