Productive infection and subsequent interaction of CD4-gp120 at the cellular membrane is required for HIV-induced apoptosis of CD4 T cells Free

Abstract

One of the hallmarks of human immunodeficiency virus type 1 (HIV-1) infection is the decline in CD4 T lymphocytes which precedes the progression from an asymptomatic state to AIDS. Apoptosis (programmed cell death) is one of the mechanisms proposed to mediate this depletion. Infectious and inactivated preparations of HIV-1 were compared for their potential to induce apoptosis. Analysis with fluorescence-activated cell sorting using the DNA intercalative compound propidium iodide demonstrated that apoptosis occurred only with infectious HIV-1, implying that cell surface binding and signalling by the virus alone were insufficient to trigger apoptosis. Apoptosis was further confirmed by the presence of characteristic digestion of host cell DNA and morphologically by nuclear condensation observed by transmission electron microscopy. HIV infection of CD4 T cell lines generated an accumulation of the cells in G/M phase of the cell cycle and cells undergoing apoptosis appeared to originate from the pool of cells in the G phase. Inhibitors of HIV replication were used to identify the point in the virus replicative cycle at which apoptosis is induced. The reverse transcriptase inhibitor, ddI, or the HIV protease inhibitor, RO31-8959 (Saquinavir), were added either 2 h before or 6 h after HIV inoculation. Only ddI inhibited HIV-induced apoptosis when added before inoculation; however, neither treatment was effective in preventing HIV-induced apoptosis when applied 6 h after inoculation. These data indicate that apoptosis requires a single round of reverse transcription and the expression of virion proteins, but not the maturation of progeny virions. Two agents which compete with HIV for binding to CD4 T cells, dextran sulphate and the anti-CD4 MAb Leu3a, were effective at preventing apoptosis when added 6 h after infection, implying that a subsequent gp120-CD4 interaction at the surface of an infected cell was required to complete the apoptotic process.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-3-681
1995-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/3/JV0760030681.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-3-681&mimeType=html&fmt=ahah

References

  1. Adleman L. M., Wofsy D. 1993; T-cell homeostasis: implications in HIV infection. Journal of Acquired Immune Deficiency Syndromes 6:144–152
    [Google Scholar]
  2. Allen P. D., Bustin S. A., Newland A. C. 1993; The role of apoptosis (programmed cell death) in haemopoiesis and the immune system. Blood Reviews 7:63–73
    [Google Scholar]
  3. Ameisen J.C. 1992; Programmed cell death and AIDS: from hypothesis to experiment. Immunology Today 13:388–391
    [Google Scholar]
  4. Ameisen J. C. 1994; Programmed cell death (apoptosis) and cell survival regulation: relevance to AIDS and cancer. AIDS 8:1197–1213
    [Google Scholar]
  5. Ameisen J. C., Capron A. 1991; Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunology Today 12:102–105
    [Google Scholar]
  6. Attanasio R., Dilley D., Buck D., Maino V. C., Lohman K. L., Kanda P., Kennedy R. C. 1991; Structural characterization of a cross-reactive idiotype shared by monoclonal antibodies specific for the human CD4 molecule. Journal of Biological Chemistry 266:14611–14619
    [Google Scholar]
  7. Banda N. K., Bernier J., Kurahara D. K., Kurrle R., Haigwood N., Sekaly R. P., Finkel T. H. 1992; Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. Journal of Experimental Medicine 176:1099–1106
    [Google Scholar]
  8. Brenner B. G., Dascal A., Margolese R. G., Wainberg M. A. 1989; Natural killer cell function in patients with acquired immunodeficiency syndrome and related diseases. Journal of Leukocyte Biology 46:75–83
    [Google Scholar]
  9. Cohen J. 1993; What causes the immune system collapse seen in AIDS?. Science 260:1256
    [Google Scholar]
  10. Cohen G. M., Sun S. M., Snowden R. T., Ormerod M. G., Dinsdale D. 1993; Identification of a transitional preapoptotic population of thymocytes. Journal of Immunology 151:566–574
    [Google Scholar]
  11. Craig J. C., Duncan I. B., Hockley D., Grief C., Roberts N. A., Mills J. S. 1991; Antiviral properties of RO31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antiviral Research 16:295–305
    [Google Scholar]
  12. Crise B., Buonocore L., Rose J. K. 1990; CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. Journal of Virology 64:5585–5593
    [Google Scholar]
  13. Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M. A., Lassota P., Traganos F. 1992; Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808
    [Google Scholar]
  14. Dodd R. Y. 1994; Viral inactivation in platelet concentrates. Transfusion Clinique et Biologique 1:181–186
    [Google Scholar]
  15. Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner-Racz K., Haase A. T. 1993; Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–362
    [Google Scholar]
  16. Gao W.-Y., Shirasaka T., Johns D. J., Broder S., Mitsuya H. 1993; Differential phosphorylation of azidothymidine, dideoxy-cytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells. Journal of Clinical Investigation 91:2326–2333
    [Google Scholar]
  17. Garcia J. V., Alfano J., Miller A. D. 1993; The negative effect of human immunodeficiency virus type 1 Nef on cell surface CD4 expression is not species specific and requires the cytoplasmic domain of CD4. Journal of Virology 67:1511–1516
    [Google Scholar]
  18. Gougeon M. L., Montagnier L. 1993; Apoptosis in AIDS. Science 260:1269–1270
    [Google Scholar]
  19. Gougeon M. L., Garcia S., Heeney J., Tschopp R., Lecoeur H., Guétard D., Rame V., Dauguet C., Montagnier L. 1993a; Programmed cell death in AIDS–related HIV and S1V infections. AIDS Research and Human Retroviruses 9:553–563
    [Google Scholar]
  20. Gougeon M. L., Laurent-Crawford A. G., Hovanessian A. G., Montagnier L. 1993b; Direct and indirect mechanisms mediating apoptosis during HIV infection: contribution to in vivo CD4 T cell depletion. Seminars in Immunology 5:187–194
    [Google Scholar]
  21. Groux H., Torpier G., Monte D., Mouton Y., Capron A., Ameisen J. C. 1992; Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. Journal of Experimental Medicine 175:331–340
    [Google Scholar]
  22. Hanson C. V. 1992; Photochemical inactivation of viruses with psoralens: an overview. Blood Cells 18:7–25
    [Google Scholar]
  23. Karantza V., Maroo A., Fay D., Sedivy J. M. 1993; Overproduction of Rb protein after the G1/S boundary causes G2 arrest. Molecular and Cellular Biology 13:6640–6652
    [Google Scholar]
  24. Kärber G. 1931; Beitrag zur kollektiven behandlung pharmako-logisher reihenversuche. Archiv für Experimented Pathologic und Pharmakologie 162:480
    [Google Scholar]
  25. Laurent-Crawford A. G., Krust B., Muller S., Riviere Y., Rey-Cuille M. A., Bechet J. M., Montagnier L., Hovanessian A. G. 1991; The cytopathic effect of HIV is associated with apoptosis. Virology 185:829–839
    [Google Scholar]
  26. Laurent-Crawford A. G., Krust B., Riviere Y., Desgranges C., Muller S., Kieny M. P., Dauguet C., Hovanessian A. G. 1993; Membrane expression of HIV envelope glycoproteins triggers apoptosis in CD4 cells. AIDS Research and Human Retroviruses 9:761–773
    [Google Scholar]
  27. Levy J. A. 1993; Pathogenesis of human immunodeficiency virus infection. Microbiological Reviews 57:183–289
    [Google Scholar]
  28. McCabe M. J. Jr, Orrenius S. 1992; Deletion and depletion: the involvement of viruses and environmental factors in T-lymphocyte apoptosis. Laboratory Investigation 66:403–406
    [Google Scholar]
  29. McConkey D. J., Orrenius S., Jondal M. 1990; Cellular signalling in programmed cell death (apoptosis). Immunology Todav 11:120–121
    [Google Scholar]
  30. Mbemba E., Chams V., Gluckman J. C., Klatzman D., Gattegno L. 1992; Molecular interaction between HIV-1 major envelope glycoprotein and dextran sulfate. Biochemica et Biophvsica Acta 1138:62–67
    [Google Scholar]
  31. Meyaard L., Otto S. A., Jonker R. R., Mijnster M. J., Keet R. P., Miedema F. 1992; Programmed death of T cells in HIV-1 infection. Science 257:217–219
    [Google Scholar]
  32. Mitsuya H., Jarrett R. F., Matsukura M., Di Marzo Veronese F., DeVico A. L., Sarngadharan M. G., Johns D. G., Reitz M. S., Broder S. 1987; Long-term inhibition of human T-lymphotropic virus type III/lymphadenopathy-associated virus (human immunodeficiency virus) DNA synthesis and RNA expression in T cells protected by 2′, 3′-dideoxynucleosides in vitro. Proceedings of the National Academy of Sciences, USA 84:2033–2037
    [Google Scholar]
  33. Mitsuya H., Looney D. J., Kuno S., Ueno R., Wong-Staal F., Broder S. 1988; Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science 240:646–648
    [Google Scholar]
  34. Nagy K., Young M., Baboonian C., Merson J., Whittle P., Oroszlan S. 1994; Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: evidence for a role of protease in the early phase. Journal of Virology 68:757–765
    [Google Scholar]
  35. Newell M. K., Haughn L. J., Maroun C. R., Julius M. H. 1990; Death of mature T cells by separate ligation of CD4 and the T-cell receptor for antigen. Nature 347:286–289
    [Google Scholar]
  36. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. 1993; HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–358
    [Google Scholar]
  37. Piatak M. Jr, Saag M. S., Yang C. L., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. 1993; High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259:1749–1754
    [Google Scholar]
  38. Redfield D. C., Richman D. D., Oxman M. N., Kronenberg L. H. 1981; Psoralen inactivation of influenza and herpes simplex viruses and of virus-infected cells. Infection and Immunity 32:1216–1226
    [Google Scholar]
  39. Rosenberg Z. F., Fauci A. S. 1991; Immunopathogenesis of HIV infection. FASEB Journal 5:2382–2390
    [Google Scholar]
  40. Sattentau Q. J., Dalgleish A. G., Weiss R. A., Beverley P. C. L. 1986; Epitopes of CD4 antigen and HIV infection. Science 234:1120–1127
    [Google Scholar]
  41. Scadden D. T., Wang Z., Groopman J. E. 1992; Quantitation of plasma human immunodeficiency virus type 1 RNA by competitive polymerase chain reaction. Journal of Infectious Diseases 165:1119–1123
    [Google Scholar]
  42. Schwartz O., Alizon M., Heard J. M., Danos O. 1994; Impairment of T cell receptor-dependent stimulation in CD4 + lymphocytes after contact with membrane-bound HIV-1 envelope glycoprotein. Virology 198:360–365
    [Google Scholar]
  43. Stein D. S., Korvick J. A., Vermund S. H. 1992; CD4 + lymphocyte cell enumeration for prediction of clinical course of human immunodeficiency virus disease. Journal of Infectious Diseases 165:352–363
    [Google Scholar]
  44. Tanneau F., McChesney M., Lopez O., Sansonetti P., Montagnier L., Riviere Y. 1990; Primary cytotoxicity against the envelope glycoprotein of human immunodeficiency virus-1: evidence for antibody-dependent cellular cytotoxicity in vivo . Journal of Infectious Diseases 162:837–843
    [Google Scholar]
  45. Telford W. G., King L. E., Fraker P. J. 1992; Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry. Cytometry 13:137–143
    [Google Scholar]
  46. Terai C., Kornbluth R. S., Pauza C. D., Richman D. D., Carson D. A. 1991; Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. Journal of Clinical Investigation 87:1710–1715
    [Google Scholar]
  47. Traganos F., Gong J., Ardelt B., Darzynkiewicz Z. 1994; Effect of staurosporine on MOLT-4 cell progression through G2 and on cytokinesis. Journal of Cell Physiology 158:535–544
    [Google Scholar]
  48. Watson A. J., Klaniecki J., Hanson C. V. 1990; Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures. AIDS Research and Human Retroviruses 6:503–513
    [Google Scholar]
  49. Weiss R. A. 1993; How does HIV cause AIDS?. Science 260:1273–1279
    [Google Scholar]
  50. Wesselborg S., Janssen O., Kabelitz D. 1993; Induction of activation-driven death (apoptosis) in activated but not resting peripheral blood T cells. Journal of Immunology 150:4338–4345
    [Google Scholar]
  51. Willey R. L., Maldarelli F., Martin M. A., Strebel K. 1992; Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. Journal of Virology 66:7193–7200
    [Google Scholar]
  52. Zarling J. M., Ledbetter J. A., Sias J., Fultz P., Eichberg J., Gjerset G., Moran P. A. 1990; HIV-infected humans, but not chimpanzees, have circulating cytotoxic T lymphocytes that lyse uninfected CD4+ cells. Journal of Immunology 144:2992–2998
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-3-681
Loading
/content/journal/jgv/10.1099/0022-1317-76-3-681
Loading

Data & Media loading...

Most cited Most Cited RSS feed