1887

Abstract

A murine monoclonal antibody (MAb F-91-55) raised against the complex of soluble CD4 and human immunodeficiency virus type 1 (HIV-1) gp120 had previously been found to inhibit syncytium formation without inhibiting the interaction of CD4 with gp120, and its binding site was localized within the first two domains (D1/D2) of CD4. We investigated whether this antibody inhibited the infectivity of HIV-1 in the CD4 T cell lines A3.01, Sup-T1 and H9. We also examined the effect of the antibody on syncytium formation between these cells and chronically infected H9 cells. Syncytium formation was found to depend critically on the incubation medium used. The effect of the MAb on HIV-1 infectivity was very limited with A3.01 and Sup-T1 cells, although it inhibited syncytium formation between A3.01 or Sup-T1 and chronically infected H9 cells. In contrast, the MAb inhibited significantly the infectivity of HIV-1 in H9 cells, but it also inhibited syncytium formation between H9 and chronically infected H9 cells to a greater extent than in the case of the other cell lines. Our results indicate that cellular systems used for syncytium assays differ in their susceptibility to inhibitory antibodies. In the A3.01 and Sup-T1 cell systems, the differences in the ability of the MAb to block viral entry or syncytium formation raise the possibility that the mechanisms of interaction of gp120/gp41 with cell membrane CD4 may be different in cell-cell and virus-cell membrane fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-3-669
1995-03-01
2021-12-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/3/JV0760030669.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-3-669&mimeType=html&fmt=ahah

References

  1. Benkirane M., Corbeau P., Housset V., Devaux C. 1993; An antibody that binds the immunoglobulin CDR3-like region of the CD4 molecule inhibits provirus transcription in HIV-infected cells. EM BO Journal 12:4909–4921
    [Google Scholar]
  2. Broder C. C., Berger E. A. 1993; CD4 molecules with a diversity of mutations encompassing the CDR3 region efficiently support human immunodeficiency virus type 1 envelope glycoprotein-mediated cell fusion. Journal of Virology 67:913–926
    [Google Scholar]
  3. Burkly L. C., Olson D., Shapiro R., Winkler G., Rosa J. J., Thomas D. W., Williams C., Chisholm P. 1992; Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody. Dissecting the basis for its inhibitory effect on HIV-induced cell fusion. Journal of Immunology 149:1779–1787
    [Google Scholar]
  4. Callebaut C., Jacotot E., Krust B., Hovanessian A. G. 1994; CD26 antigen and HIV fusion? Response. Science 264:1156–1165
    [Google Scholar]
  5. Camerini D., Seed B. 1990; A CD4 domain important for HIV-mediated syncytium formation lies outside the virus binding site. Cell 60:747–754
    [Google Scholar]
  6. Cao J., Bergeron L., Helseth E., Thali M., Repke H., Sodroski J. 1993; Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein. Journal of Virology 67:2747–2755
    [Google Scholar]
  7. Celada F., Cambiaggi C., Maccari J., Burastero S., Gregory T., Patzer E., Porter J., McDanal C., Matthews T. 1990; Antibody raised against soluble CD4-gp120 complex recognizes the CD4 moiety and blocks membrane fusion without inhibiting CD4-gp120 binding. Journal of Experimental Medicine 172:1143–1150
    [Google Scholar]
  8. Choe H. R., Sodroski J. 1992; Contribution of charged amino acids in the CDR2 region of CD4 to HIV-1 gp120 binding. Journal of AIDS 5:204–210
    [Google Scholar]
  9. Corbeau P., Benkirane M., Weil R., David C., Emiliani S., Olive D., Mawas C., Serre A., Devaux C. 1993; Ig CDR3-like region of the CD4 molecule is involved in HIV-induced syncytia formation but not in viral entry. Journal of Immunology 150:290–301
    [Google Scholar]
  10. Corbeau P., Haran M., Binz H., Devaux C. 1994; Jacalin, a lectin with anti-HIV-1 properties, and HIV-1 gp120 envelope protein interact with distinct regions of the CD4 molecule. Molecular Immunology 31:569–575
    [Google Scholar]
  11. Daar E. S., Li X. L., Moudgil T., Ho D. D. 1990; High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proceedings of the National Academy of Sciences, USA 87:6574–6578
    [Google Scholar]
  12. Dalgleish A. G., Beverly C. L., Clapham P. R., Crawford M., Greaves F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for AIDS retrovirus. Nature 312:763–767
    [Google Scholar]
  13. De Jong J. J., Goudsmit J., Keulen W., Klaver B., Krone W., Tersmette M., De Ronde A. 1992; Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity. Journal of Virology 66:757–765
    [Google Scholar]
  14. Dimitrov D. S., Broder C. C., Berger E. A., Blumenthal R. 1993; Calcium ions are required for cell fusion mediated by the CD4-human immunodeficiency virus type 1 envelope glycoprotein interaction. Journal of Virology 67:1647–1652
    [Google Scholar]
  15. Eiden L. E., Lifson J. D. 1992; HIV interactions with CD4: a continuum of conformations and consequences. Immunology Today 13:201–206
    [Google Scholar]
  16. Favero J., Corbeau P., Nicolas M., Benkirane M., Travé G., Dixon J. F. P., Aucouturier P., Rasheed S., Parker J. W., Liautard J. P., Devaux C., Dornand J. 1993; Inhibition of human immunodeficiency virus infection by the lectin jacalin and by a derived peptide showing a sequence similarity with gp120. European Journal of Immunology 23:179–185
    [Google Scholar]
  17. Gershoni J. M., Denisova G., Raviv D., Smorodinsky N. I., Buyaner D. 1993; HIV binding to its receptor creates specific epitopes for the CD4/gp120 complex. FASEB Journal 7:1185–1187
    [Google Scholar]
  18. Golding H., Blumenthal R., Manischewitz J., Littman D. R., Dimitrov D. S. 1993; Cell fusion mediated by interaction of a hybrid CD4.CD8 molecule with the human immunodeficiency virus type 1 envelope glycoprotein does occur after a long lag time. Journal of Virology 67:6469–6475
    [Google Scholar]
  19. Hasanuma T., Tsubota H. S., Watanabe M., Chen Z. W., Lord C. I., Burkly L. C., Daley J. F., Letvin N. L. 1992; Regions of the CD4 molecule not involved in virus binding or syncytia formation are required for HIV-1 infction of lymphocytes. Journal of Immunology 148:1841–1846
    [Google Scholar]
  20. Healey D., Dianda L., Moore J. P., McDougal J. S., Moore M. J., Estess P., Buck D., Kwong P. D., Beverley P. C., Sattentau Q. J. 1990; Novel anti-CD4 monoclonal antibodies separate human immunodeficiency virus infection and fusion of CD4+ cells from virus binding. Journal of Experimental Medicine 172:1233–1242
    [Google Scholar]
  21. Hoffman A. D., Banapour B., Levy J. A. 1985; Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology 147:326–335
    [Google Scholar]
  22. Johnson V. A., Byington R. E. 1990; Infectivity assay (virus yield assay). In Techniques in HIV Research pp 71–76 Edited by Aldovani A., Walker B. D. New York: Stockton Press;
    [Google Scholar]
  23. Kabat D., Kozak S. L., Wehrly K., Chesebro B. 1994; Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. Journal of Virology 68:2570–2577
    [Google Scholar]
  24. Kalter D. C., Gendelman H. E., Meltzer M. S. 1991; Inhibition of human immunodeficiency virus infection in monocytes by monoclonal antibodies against leukocyte adhesion molecules. Immunology Letters 30:219–228
    [Google Scholar]
  25. Klasse P. J., Moore J. P., Jameson B. A. 1993; The interplay of the HIV-1 envelope complex, gp120 and gp41, with CD4. In HIV Molecular Organization. Pathogenicity and Treatment pp 241–266 Edited by Morrow W. J. W., Haigwood N. L. Amsterdam: Elsevier Science Publishers;
    [Google Scholar]
  26. Konopka K., Davis B. R., Larsen C. E., Alford D. R., Debs R. J., Düzgünes N. 1990; Liposomes modulate human immunodeficiency virus infectivity. Journal of General Virology 71:2899–2907
    [Google Scholar]
  27. Kowalski M., Bergeron L., Dorfman T., Haseltine W., Sodroski J. 1991; Attenuation of human immunodeficiency virus type 1 cytopathic effect by a mutation affecting the transmembrane envelope glycoprotein. Journal of Virology 65:281–291
    [Google Scholar]
  28. Larsen C. E., Alford D. R., Young L. J. T., McGraw T. P., Düzgünes N. 1990; Fusion of simian immunodeficiency virus (SIVmac) with liposomes and erythrocyte ghosts: effect of liposome composition, low pH and calcium. Journal of General Virology 71:1947–1955
    [Google Scholar]
  29. Levy J. A. 1993; Pathogenesis of human immunodeficiency virus infection. Microbiological Reviews 57:183–289
    [Google Scholar]
  30. Lifson J. D. 1993; Fusion of HIV-infected cells with uninfected cells; CD4-dependent HIV-induced cell fusion. Methods in Enzvmology 221:3–12
    [Google Scholar]
  31. Lifson J. D., Feinberg M. B., Reyes G. R., Rabin L., Banapour B., Chakrabarti S., Moss B., Wong-Staal F., Steimer K. S., Engleman E. G. 1986; Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323:725–728
    [Google Scholar]
  32. Lifson J. D., Hwang K. M., Nara P. L., Fraser B., Padgett M., Dunlop N. M., Eiden L. E. 1988; Synthetic CD4 peptide derivatives that inhibit HIV infection and cytopathicity. Science 241:712–716
    [Google Scholar]
  33. Lu S., Putney S. D., Robinson H. L. 1992; Human immunodeficiency virus type 1 entry into T cells: more-rapid escape from an anti-V3 loop than from an antireceptor antibody. Journal of Virology 66:2547–2550
    [Google Scholar]
  34. McDougal J. S., Nicholson J. K. A., Cross G. D., Cort S. P., Kennedy M. S., Mawle A. C. 1986; Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, epitope mapping, antibody inhibition, and potential for idiotypic mimicry. Journal of Immunology 137:2937–2944
    [Google Scholar]
  35. Moore J. P., McKeating J. A., Weiss R. A., Clapham P. R., Sattentau Q. J. 1991; Receptor-mediated activation of immunodeficiency viruses in viral fusion. Science 252:1322–1323
    [Google Scholar]
  36. Moore J. P., Sattentau Q. J., Klasse P. J., Burkly L. C. 1992; A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. Journal of Virology 66:4784–4793
    [Google Scholar]
  37. Ohki K., Kimura T., Ohmura K., Kato S., Ikuta K. 1990; Blocking of HIV-1 infection, but not HIV-1-induced syncytium formation, by a CD4 peptide derivative partly corresponding to an immunoglobulin CDR3. AIDS 14:1160–1161
    [Google Scholar]
  38. Ohki K., Kimura T., Ohmura K., Morikawa Y., Jones I. M., Azuma I., Ikuta K. 1992; Monoclonal antibodies to a CD4 peptide derivative which includes the region corresponding to an immunoglobulin CDR3: evidence of the involvement of pre-CDR3-related region in HIV-1 and host cell interaction. Molecular Immunology 29:1391–1400
    [Google Scholar]
  39. Pantaleo G., Poli G., Butini L., Fox C., Dayton A. I., Fauci A. S. 1991a; Dissociation between syncytia formation and HIV spreading. Suppression of syncytia formation does not necessarily reflect inhibition of HIV infection. European Journal of Immunology 21:1771–1774
    [Google Scholar]
  40. Pantaleo G., Butini L., Graziosi C., Poll G., Schnittman S. M., Greenhouse J. J., Gallin J. I., Fauci S. A. 1991b; Human immunodeficiency virus (HIV) infection in CD4+ T lymphocytes genetically deficient in LFA-1: LFA-1 is required for HIV-mediated cell fusion but not for viral transmission. Journal of Experimental Medicine 173:511–514
    [Google Scholar]
  41. Peterson A., Seed B. 1988; Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54:65–72
    [Google Scholar]
  42. Poulin L., Evans L. A., Tang S., Barboza A., Legg H., Littman D. R., Levy J. A. 1991; Several CD4 domains can play a role in human immunodeficiency virus infection of cells. Journal of Virology 65:4893–4901
    [Google Scholar]
  43. Rausch D. M., Lifson J. D., Padgett M. P., Chandrasekhar B., Lendvay J., Hwang K. M., Eiden L. E. 1992; CD4 (81–92)-based peptide derivatives. Structural requirements for blockade of HIV infection, blockade of HIV-1 induced syncytium formation, and virostatic activity in vitro . Biochemical Pharmacology 43:1785–1796
    [Google Scholar]
  44. Rey F., Donker G., Hirsch I., Chermann J.-C. 1991; Productive infection of CD4+ cells by selected HIV strains is not inhibited by anti-CD4 monoclonal antibodies. Virology 181:165–171
    [Google Scholar]
  45. Sato H., Orenstein J., Dimitrov D., Martin M. 1992; Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 186:712–724
    [Google Scholar]
  46. Sattentau Q. J., Moore J. P. 1991; Conformational changes induced in the human immunodeficiency virus envelope glycoproteins by soluble CD4 binding. Journal of Experimental Medicine 174:407–415
    [Google Scholar]
  47. Sattentau Q. J., Arthos J., Deen K., Hanna N., Healey D., Beverley P. C. L., Sweet R., Truneh A. 1989; Structural analysis of the human immunodeficiency virus-binding domain of CD4. Journal of Experimental Medicine 170:1319–1334
    [Google Scholar]
  48. Schols D., Pauwels R., Witvrouw M., Desmyter J., De Clercq E. 1992; Differential activity of polyanionic compounds and castanospermine against HIV replication and HIV-induced syncytium formation depending on virus strain and cell type. Antiviral Chemistry and Chemotherapy 3:23–29
    [Google Scholar]
  49. Sinangil F., Loyter A., Volsky D. J. 1988; Quantitative measurement of fusion between human immunodeficiency virus and cultured cells using membrane fluorescence dequenching. FEBS Letters 239:88–92
    [Google Scholar]
  50. Sodroski J., Goh W. C., Rosen C., Campbell K., Haseltine W. 1986; Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322:470–474
    [Google Scholar]
  51. Steffy K. R., Kraus G., Looney D. J., Wong-Staal F. 1992; Role of fusogenic peptide sequence in syncytium induction and infectivity of human immunodeficiency virus type 2. Journal of Virology 66:4532–4535
    [Google Scholar]
  52. Stein B. S., Engleman E. G. 1991; Mechanism of HIV-1 entry into CD4+ T cells. In Mechanisms and Specificity of HIV Entry into Host Cells pp 71–86 Edited by Düzgünes N. New York: Plenum Press.;
    [Google Scholar]
  53. Tersmette M., De Goede R. E. Y., Al B. J. M., Winkel I. N., Gruters R. A., Cuypers H. T., Huisman H. G., Miedema F. 1989; Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Journal of Virology 62:2026–2032
    [Google Scholar]
  54. Truneh A., Buck D., Cassatt D. R., Juszczak R., Kassis S., Ryu S.-E., Healey D., Sweet R., Sattentau Q. 1991; A region in domain 1 of CD4 distinct from the primary gp120 binding site is involved in HIV infection and virus-mediated fusion. Journal of Biological Chemistry 266:5942–5948
    [Google Scholar]
  55. Wain-Hobson S., Vartanian J. P., Henry M., Chenciner N., Cheynier R., Dalassus S., Martins L.-P., Sala M., Nugeyre M.-T., Guetard D., Klatzmann D., Gluckman J.-C., Rosenbaum W., Barre-Sinoussi F., Montagnier L. 1991; LAV revisited: origins of the early HIV-1 isolates from Institut Pasteur. Science 252:961–965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-3-669
Loading
/content/journal/jgv/10.1099/0022-1317-76-3-669
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error