Phospholipid interactions of the putative fusion peptide of hepatitis B virus surface antigen S protein Free

Abstract

One of the first steps in the infective cycle of an enveloped virus consists of the fusion of the viral and cellular membranes. This process is usually achieved as a result of membrane destabilization brought about by a viral fusion peptide located at the amino terminus of one of the viral envelope glycoproteins. Previous sequence similarity studies by Rodriguez-Crespo . ( 75, 637–639, 1994) have shown that a hydrophobic stretch in the amino-terminal sequence of the S protein of hepatitis B virus shares several characteristics with fusion peptides of retroviruses and paramyxoviruses. A 16 residue peptide with this sequence was synthesized and its interaction with liposomes characterized. This peptide was able to mediate vesicle aggregation, lipid mixing and liposome leakage in a pH dependent manner at concentrations ranging from 3.5 to 52.0 µ. These effects were specific for negatively charged phospholipid vesicles. The peptide was also able to haemolyse erythrocytes. This study supports the notion that the sequence might be important in the initial infective steps of this virus, interacting with the target membranes and bringing about their subsequent destabilization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-2-301
1995-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/2/JV0760020301.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-2-301&mimeType=html&fmt=ahah

References

  1. Bentz J., Düzgünes N., Nir S. 1983; Kinetics of divalent cation induced fusion of phosphatidylserine vesicles. Correlation between fusogenic properties and binding affinities. Biochemistry 22:33203330
    [Google Scholar]
  2. Blumental R., Henkart M., Steer C. J. 1983; Clathrin-induced pH-dependent fusion of phosphatidylcholine vesicles. Journal of Biological Chemistry 258:3409–3415
    [Google Scholar]
  3. Bruss V., Lu X., Thomssen R., Gerlich W. H. 1994; Posttranslational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO Journal 13:2273–2279
    [Google Scholar]
  4. Carr C. M., Kim P. 1993; A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832
    [Google Scholar]
  5. Chambers P., Pringle C. R., Easton A. J. 1990; Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. Journal of General Virology 71:3075–3080
    [Google Scholar]
  6. Düzgünes N., Shavnin S. A. 1992; Membrane destabilization by N-terminal peptides of viral envelope proteins. Journal of Membrane Biology 128:71–80
    [Google Scholar]
  7. Düzgünes N., Allen T. M., Fedor J., Papahadjopoulos D. 1987; Lipid mixing during membrane aggregation and fusion. Why fusion assays disagree. Biochemistry 26:8435–8442
    [Google Scholar]
  8. Ellens H., Bentz J., Szoka F. C. 1985; H+ and Ca++-mduced fusion and destabilization of liposomes. Biochemistry 24:3099–3106
    [Google Scholar]
  9. Ganbm D., Varmus H. E. 1987; The molecular biology of the hepatitis B viruses. Annual Review of Biochemistry 56:651–693
    [Google Scholar]
  10. Gerlich W. H., Lu X., Heermann K. H. 1993; Studies on the attachment and penetration of hepatitis B virus. Journal of Hepatology 17:S10–S14
    [Google Scholar]
  11. Guerrero E., Gavilanes F., Peterson D. L. 1988; Model for the protein arrangement in HBsAg particles based on physical and chemical studies. In Viral Hepatitis and Liver Disease pp 606–613 Edited by Zuckerman A. J. New York: Alan R. Liss;
    [Google Scholar]
  12. Heermann K. H., Gerlich W. H. 1991; Surface proteins of hepatitis B viruses. In Molecular Biology of Hepatitis B Virus pp 109–143 Edited by MacLachlan A. Boca Raton: CRC Press;
    [Google Scholar]
  13. King D. S., Fields C. G., Fields G. B. 1990; A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. International Journal of Peptide and Protein Research 36:255–266
    [Google Scholar]
  14. Larsen C. E., Alford D. R., Young L. J. T., McGraw T. P., Düzgünes N. 1990; Fusion of simian immunodeficiency virus with liposomes and erythrocyte ghost membranes: effects of lipid composition, pH and calcium. Journal of General Virology 71:1947–1955
    [Google Scholar]
  15. Larsen C. E., Nir S., Alford D. R., Jennings M., Lee K.-D., Düzgünes N. 1993; Human immunodeficiency virus type 1 (HIV-1) fusion with model membranes: kinetic analysis and the role of lipid composition, pH and divalent cations. Biochimica et Biophvsica Acta 1147:223–236
    [Google Scholar]
  16. Lear J. D., DeGrado W. F. 1987; Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. Journal of Biological Chemistry 262:6500–6505
    [Google Scholar]
  17. Mandart E., Kay A., Galibert F. 1984; Nucleotide sequence of a cloned duck hepatitis B virus genome: comparison with the woodchuck and human hepatitis B virus sequences. Journal of Virology 49:782–792
    [Google Scholar]
  18. Martin I., Defrise-Quertain F., Mandieau V., Nielsen N. M., Saemark T., Burny A., Brasseur R., Ruysschaert J.-M., Vandenbranden M. 1991; Fusogenic activity of SIV (simian immunodeficiency virus) peptides located in the gp32 NH2-terminal domain. Biochemical and Biophysical Research Communications 175:872–879
    [Google Scholar]
  19. Martin I., Defrise-Quertain F., Decroly E., Vandenbranden M., Brasseur R., Ruysschaert J.-M. 1993; Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. Biochimica et Biophysica Acta 1145:124–133
    [Google Scholar]
  20. Murata M., Sugahara Y., Takahashi S., Ohnishi S. 1987; pH-dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment of influenza virus hemagglutinin. Journal of Biochemistry 102:957–962
    [Google Scholar]
  21. Okamoto H., Imai M., Shimozaki M., Moshi Y., Iizuka H., Gotanda T., Tsukuda F., Miyakawa Y., Mayumi M. 1986; Nucleotide sequence of a cloned hepatitis B virus genome, subtype ayr: comparison with genomes of the other three subtypes. Journal of General Virology 67:2305–2314
    [Google Scholar]
  22. Papini E., Colonna R., Cusinato F., Montecucco C., Tomasi M., Rappuoli R. 1987; Lipid interaction of diphtheria toxin and mutants with altered fragment B. European Journal of Biochemistry 169:629–635
    [Google Scholar]
  23. Peterson D. L. 1987; The structure of hepatitis B surface antigen and its antigenic sites. BioEssavs 6:258–262
    [Google Scholar]
  24. Rodri′guez-Crespo I., Gomez-Gutierrez J., Nieto M., Peterson D. L., Gavilanes F. 1994a; Prediction of a putative fusion peptide in the S protein of hepatitis B virus. Journal of General Virology 75:637–639
    [Google Scholar]
  25. Rodri′guez-Crespo I., Gomez-Gutierrez J., Peterson D. L., Gavilanes F. 1994b; Interaction of a peptide corresponding to the amino-terminus region of the S protein with liposomes. Biochemical Society Transactions 22:365S
    [Google Scholar]
  26. Rost B., Sander C. 1993; Prediction of protein structure at better than 70% accuracy. Journal of Molecular Biology 232:584–599
    [Google Scholar]
  27. Schlegel R., Wade M. 1984; A synthetic peptide corresponding to the NH, terminus of vesicular stomatitis virus glycoprotein is a pH-dependent hemolysin. Journal of Biological Chemistry 259:4691–1694
    [Google Scholar]
  28. Seeger C., Ganem D., Varmus H. E. 1984; Nucleotide sequence of an infectious molecularly cloned genome of ground squirrel hepatitis virus. Journal of Virology 51:367–375
    [Google Scholar]
  29. Sollner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. 1993; SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324
    [Google Scholar]
  30. Stirk H. J., Thornton J. M., Howard C. R. 1992; A topological model for hepatitis B surface antigen. Intervirology 33:148–158
    [Google Scholar]
  31. Struck D. K., Hoekstra D., Pagano R. E. 1981; Use of resonance energy transfer to monitor fusion. Biochemistry 20:4093–1099
    [Google Scholar]
  32. Verkleij A. J. 1984; Lipidic intramembranous particles. Biochimica et Biophysica Acta 779:43–63
    [Google Scholar]
  33. Wild C., Oas T., McDanal E., Bolognese D., Mathews T. 1992; A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proceedings of the National Academy of Sciences, USA 77:3273–3277
    [Google Scholar]
  34. White J. M. 1990; Viral and cellular membrane fusion proteins. Annual Review of Physiology 52:675–697
    [Google Scholar]
  35. White J. M. 1992; Membrane fusion. Science 258:917–924
    [Google Scholar]
  36. Woodget P. L., Rose J. K. 1986; Amino-terminal mutation of the vesicular stomatitis virus glycoprotein does not affect its fusion activity. Journal of Virology 59:486–489
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-2-301
Loading
/content/journal/jgv/10.1099/0022-1317-76-2-301
Loading

Data & Media loading...

Most cited Most Cited RSS feed