A region of the coronavirus infectious bronchitis virus 1a polyprotein encoding the 3C-like protease domain is subject to rapid turnover when expressed in rabbit reticulocyte lysate Free

Abstract

In order to investigate the mechanisms involved in the processing of infectious bronchitis virus polyproteins, several candidate regions of the genome have been cloned and expressed . During these studies it was observed that the translation product encoded by one of these clones (pKT205) was poorly expressed. Biochemical and genetic analyses revealed that the basis for the poor expression was a post-translational event involving ubiquitination of the protein and degradation by an ATP-dependent system operating in the reticulocyte lysate used for the expression. Two independently acting regions which conferred instability were identified, one of which mapped to the predicted 3C protease domain, contained within the 5′ end of the clone, while the other, more C-terminal region, was effective in conferring instability upon a heterologous protein to which it had been transferred. These regions may influence the stability of the authentic viral protein(s) and hence allow for the control of their expression and/or function at the level of proteolysis by cellular protease(s).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-12-3059
1995-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/12/JV0760123059.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-12-3059&mimeType=html&fmt=ahah

References

  1. Bachmair A., Finley D., Varshavsky A. 1986; In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186
    [Google Scholar]
  2. Baker S. C., Shieh C.-K., Soe L. H., Chang M. F., Vannier D. M., Lai M. M. C. 1989; Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. Journal of Virology 63:3693–3699
    [Google Scholar]
  3. Baker S. C., Yolomori K., Dong S., Carlisle R., Gorbalenya A. E., Koonin E. V., Lai M. M. C. 1993; Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. Journal of Virology 67:6056–6063
    [Google Scholar]
  4. Boursnell M. E. G., Brown T. D. K., Foulds I. J., Green P. F., Tomley F. M., Binns M. M. 1987; Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology 68:57–77
    [Google Scholar]
  5. Brierley L., Boursnell M. E. G., Binns M. M., Bilimoria B., Blok V. C., Brown T. D. K., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO Journal 6:3779–3785
    [Google Scholar]
  6. Brierley I., Digard P., Inglis S. C. 1989; Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547
    [Google Scholar]
  7. Brierley I., Boursnell M. E. G., Binns M. M., Bilimoria B., Rolley N. J., Brown T. D. K., Inglis S. C. 1990; Products of the polymerase-encoding region of the coronavirus IBV. In Coronaviruses And Their Diseases pp 275–278 Edited by Cavanagh D., Brown T. D. K. New York: Plenum Press;
    [Google Scholar]
  8. Brown T. D. K., Brierley I. 1995; The coronavirus nonstructural proteins. In The Coronaviridae pp 191–217 Edited by Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  9. Cavanagh D., Brian D. A., Enjuanes L., Holmes K. V., Lai M. M. C., Laude H., Siddell S. G., Spaan W., Taguchi F., Talbot P. J. 1990; Recommendations of the coronavirus study group for the nomenclature of the structural proteins, mRNAs and genes of coronaviruses. Virology 176:306–307
    [Google Scholar]
  10. Ciechanover A., Schwartz A. L. 1994; The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB Journal 8:182–191
    [Google Scholar]
  11. Chen P., Johnson P., Sommer T., Jentsch S., Hochstrasser M. 1993; Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell 74:357–369
    [Google Scholar]
  12. Craig D., Howell M. T., Gibbs C. L., Hunt T., Jackson R. J. 1992; Plasmid cDNA-directed protein synthesis in a coupled eukaryotic in vitro transcription translation system. Nucleic Acids Research 20:4987–1995
    [Google Scholar]
  13. Crook T., Vousden K. H. 1994; Interaction of HPV E6 with p53 and associated proteins. Biochemical Society Transactions 22:52–55
    [Google Scholar]
  14. De Groot R. J., Rumenapf T., Kuhn R. J., Strauss E. G., Strauss J. H. 1991; Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proceedings of the National Academy of Sciences, USA 88:8967–8971
    [Google Scholar]
  15. Denison M. R., Perlman S. 1986; Translation and processing of mouse hepatitis virus virion RNA in a cell free system. Journal of Virology 60:12–18
    [Google Scholar]
  16. Denison M. R., Perlman S. 1987; Identification of a putative polymerase gene product in cells infected with murine coronavirus A59. Virology 153:565–568
    [Google Scholar]
  17. Denison M. R., Zolhik P. W., Hughes S. A., Giangreco B., Olsen A. L., Perlman S., Liebowitz J. L., Weiss S. R. 1992; Intracellular processing of the N-terminal ORF la proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology 189:274–284
    [Google Scholar]
  18. Dotto G. P., Enea V., Zinder N. D. 1981; Functional analysis of bacteriophage fl intergenic region. Virology 114:463–173
    [Google Scholar]
  19. Flinta C., Persson B., Jornvall H., von Heijne G. 1986; Sequence determinants of cytosolic N-terminal protein processing. European Journal of Biochemistry 154:193–196
    [Google Scholar]
  20. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Coronavirus genome: prediction of putative functional domains in the non-structural polyproteins by comparative amino acid sequence analysis. Nucleic Acids Research 17:4847–4860
    [Google Scholar]
  21. Gottesman S., Maurizi M. R. 1992; Regulation by proteolysis: energy dependent proteases and their targets. Microbiological Reviews 56:592–621
    [Google Scholar]
  22. Hames B. D. 1981; An introduction to polyacrylamide gel electrophoresis. In Gel Electrophoresis Of ProteinsA Practical Approach pp 1–91 Edited by Hames B. D., Rickwood D. Oxford: IRL Press;
    [Google Scholar]
  23. Herold J., Raabe T., Schelle-Prinz B., Siddell S. G. 1993; Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology 195:680–691
    [Google Scholar]
  24. Hershko A., Ciechanover A. 1992; The ubiquitin system for protein degradation. Annual Review of Biochemistry 61:761–807
    [Google Scholar]
  25. Hershko A., Leshinsky E., Ganoth D., Heller H. 1984; ATP-dependent degradation of ubiquitin-protein conjugates. Proceedings of the National Academy of Sciences, USA 81:1619–1623
    [Google Scholar]
  26. Hochstrasser M., Varshavsky A. 1990; In vivo degradation of a transcriptional regulator: the yeast a2 repressor. Cell 61:697–708
    [Google Scholar]
  27. Hough R., Rechsteiner M. 1986; Ubiquitin-lysozyme conjugates. Journal of Biological Chemistry 261:2391–2399
    [Google Scholar]
  28. Jentsch S. 1992; The ubiquitin-conjugation system. Annual Review of Genetics 26:179–207
    [Google Scholar]
  29. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, USA 82:488–492
    [Google Scholar]
  30. Lai M. M. C. 1990; Coronavirus: organisation, replication and expression of genome. Annual Review of Microbiology 44:303–333
    [Google Scholar]
  31. Lawson T. G., Gronos D. L., Werner A., Wey A. C., Digeorge A. M., Lockhart J. L., Wilson J. W., Wintrode P. L. 1994; The encephalomyocarditis virus 3C protease is a substrate for the ubiquitin-mediated proteolytic system. Journal of Biological Chemistry 269:28429–28435
    [Google Scholar]
  32. Lee H.-J., Shieh C.-K., Gorbalenya A. E., Koonin E. V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M. M. C. 1991; The complete sequence (22 kilobases) of murine coronavirus gene l encoding the putative proteases and RNA polymerase. Virology 180:567–582
    [Google Scholar]
  33. Liu D. X., Brierley I., Tibbles K. W., Brown T. D. K. 1994; A 100 kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products. Journal of Virology 68:5772–5780
    [Google Scholar]
  34. Lu Y., Lu X., Denison M. R. 1995; Identification and characterization of a serine-like proteinase of the murine coronavirus MHV A59. Journal of Virology 69:3554–3559
    [Google Scholar]
  35. Oberst M. D., Gollan T. J., Gupta M., Peura S. R., Zydlewski J. D., Sudarsanan P., Lawson T. G. 1993; The encephalomyocarditis virus 3C protease is rapidly degraded by an ATP-dependent proteolytic system in reticulocyte lysate. Virology 193:28–40
    [Google Scholar]
  36. Rechsteiner M., Hoffman L., Dubiel W. 1993; The multicatalytic and 26S proteases. Journal of Biological Chemistry 268:6065–6068
    [Google Scholar]
  37. Russel M., Kidd S., Kelley M. R. 1986; An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene 45:333–338
    [Google Scholar]
  38. Scheffner M., Munger K., Huibregtse J. M., Howley P. M. 1991; Targeted degradation of the retinoblastoma protein by human papillomavirus E7-E6 fusion proteins. EMBO Journal 11:2425–2431
    [Google Scholar]
  39. Scheffner M., Huibregtse J. M., Vlerstra R. D., Howley P. M. 1991; The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505
    [Google Scholar]
  40. Soe L. H., Shieh C.-K., Baker S. C., Chang M.-F., Lai M. M. C. 1987; Sequence and translation of the murine coronavirus 5-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. Journal of Virology 61:3968–3976
    [Google Scholar]
  41. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  42. Stern D. F., Kennedy S. J. T. 1980; Coronavirus multiplication strategy. I. Identification and characterization of virus specified RNA species to the genome. Journal of Virology 34:665–674
    [Google Scholar]
  43. Stern D. F., Sefton B. M. 1984; Coronavirus multiplication: location of genes for virion proteins on the avian infectious bronchitis virus genome. Journal of Virology 50:22–29
    [Google Scholar]
  44. Varshavsky A. 1992; The N-end rule. Cell 69:725–735
    [Google Scholar]
  45. Young J. F., Desselberger U., Graves P., Palese P., Shatzman A., Rosenberg M. 1983; Cloning and expression of influenza virus genes. In The Origin of Pandemic Influenza Viruses pp 129–138 Edited by Laver W. G. Amsterdam: Elsevier;
    [Google Scholar]
  46. Ziebuhr J., Herold J., Siddell S. G. 1995; Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. Journal of Virology 69:4331–4338
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-12-3059
Loading
/content/journal/jgv/10.1099/0022-1317-76-12-3059
Loading

Data & Media loading...

Most cited Most Cited RSS feed