1887

Abstract

We investigated mutations within the presumed 3′–5′ exonuclease domain of the DNA polymerase from herpes simplex virus type 1. The mutation sites correspond to residues in DNA polymerase I () which bind two metal ions that are required for exonuclease function. To evaluate the effect of the herpesvirus mutations on enzymatic activity, we over-expressed the wild-type DNA polymerase and one mutant enzyme using a baculovirus expression system. Both proteins exhibited DNA polymerase activity after partial purification, but the mutant protein was drastically deficient in exonuclease activity. This finding suggests that the herpesvirus exonuclease may utilize the same metal-ion-mediated mechanism employed by DNA polymerase I. We also attempted to transfer each of the mutations into the herpesvirus genome using a marker rescue protocol. Although wild-type sequences could be transferred readily, recombinant viruses carrying mutant sequences were not recovered. We discuss the possibility that the mutations are lethal and suggest mechanisms by which a deficiency in 3′–5′ exonuclease might cause loss of viability.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-12-2999
1995-12-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/12/JV0760122999.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-12-2999&mimeType=html&fmt=ahah

References

  1. Bernad A., Blanco L., Lazaro J. M., Martin G., Salas M. 1989; A conserved 3′–5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228
    [Google Scholar]
  2. Blanco L., Bernad A., Blasco M. A., Salas M. 1991; A general structure for DNA-dependent DNA polymerases. Gene 100:27–38
    [Google Scholar]
  3. Blasco M. A., Lazaro J. M., Bernad A., Blanco L., Salas M. 1992; ϕ 29 DNA polymerase active site. Mutants in conserved residues Tyr254 and Tyr390 are affected in dNTP binding. Journal of Biological Chemistry 267:19427–19434
    [Google Scholar]
  4. Blasco M. A., Lazaro J. M., Blanco L., Salas M. 1993a; ϕ 29 DNA polymerase active site. The conserved amino acid motif ‘Kx3NSxYG’ is involved in template-primer binding and dNTP selection. Journal of Biological Chemistry 268:16763–16770
    [Google Scholar]
  5. Blasco M. A., Lazaro J. M., Blanco L., Salas M. 1993b; ϕ 29 DNA polymerase active site. Residue Asp249 of conserved amino acid motif ‘Dx2SLYP’ is critical for synthetic activities. Journal of Biological Chemistry 268:24106–24113
    [Google Scholar]
  6. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  7. Coen D. M., Aschman D. P., Gelep P. T., Retondo M. J., Weller S. K., Schaffer P. A. 1984; Fine mapping and molecular cloning of mutations in the herpes simplex vims DNA polymerase locus. Journal of Virology 49:236–247
    [Google Scholar]
  8. Copeland W. C., Wang T. S. F. 1993; Mutational analysis of the human DNA polymerase α-like DNA polymerases is involved in metal-specific catalysis. Journal of Biological Chemistry 268:11028–11040
    [Google Scholar]
  9. Delarue M., Poch O., Tordo N., Moras D., Argos P. 1990; An attempt to unify the structure of polymerases. Protein Engineering 3:461–467
    [Google Scholar]
  10. Derbyshire V., Freemont P. S., Sanderson M. R., Beese L. S., Friedman J. M., Joyce C. M., Steitz T. A. 1988; Genetic and crystallographic identification of essential groups in the 3′–5′ exonucleolytic site of DNA polymerase. Science 240:199–201
    [Google Scholar]
  11. Derbyshire V., Grindley N. D. F., Joyce C. M. 1991; The 3′–5′ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO Journal 10:17–24
    [Google Scholar]
  12. Derse D., Cheng Y. C., Furman P. A., St Clair M. H., Elion G. B. 1981; Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate. Effects on primer-template function. Journal of Biological Chemistry 256:11447–11451
    [Google Scholar]
  13. Dong Q., Copeland W. C., Wang T. S. F. 1993; Mutational studies of human DNA polymerase a. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. Journal of Biological Chemistry 268:24163–24174
    [Google Scholar]
  14. Dorsky D. I., Crumpacker C. S. 1988; Expression of herpes simplex virus type 1 DNA polymerase gene by in vitro translation effects of gene deletions on activity. Journal of Virology 62:3224–3232
    [Google Scholar]
  15. Echols H., Goodman M. F. 1991; Fidelity mechanisms in DNA replication. Annual Review of Biochemistry 60:477–511
    [Google Scholar]
  16. Elion G. B., Furman P. A., Fyfe J. A., de Miranda P., Beauchamp L., Schaeffer H. J. 1977; Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proceedings of the National Academy of Sciences, USA 74:5716–5720
    [Google Scholar]
  17. Foury F., Vanderstraeten S. 1992; Yeast mitochondrial DNA mutators with deficient proofreading exonucleolytic activity. EMBO Journal 11:2717–2726
    [Google Scholar]
  18. Frey M. W., Nossal N. G., Capson T. L., Benkovic S. J. 1993; Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3′–5′ exonuclease activity. Proceedings of the National Academy of Sciences, USA 90:2579–2583
    [Google Scholar]
  19. Garmendia C., Bernad A., Esteban J. A., Blanco L., Salas M. 1992; The bacteriophage ϕ 29 DNA polymerase, a proofreading enzyme. Journal of Biological Chemistry 267:2594–2599
    [Google Scholar]
  20. Gibbs J. S., Chiou H. C., Bastow K. F., Cheng Y. C., Coen D. M. 1988; Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proceedings of the National Academy of Sciences, USA 85:6672–6676
    [Google Scholar]
  21. Gibbs J. S., Weisshart K., Digard P., DeBruynkops A., Knipe D. M., Coen D. M. 1991; Polymerization activity of an α-like DNA polymerase requires a conserved 3′–5′ exonuclease active site. Molecular and Cellular Biology 11:4786–4795
    [Google Scholar]
  22. Hall J. D. 1988; Modeling functional sites in DNA polymerases. Trends in Genetics 4:42–16
    [Google Scholar]
  23. Hall J. D., Coen D. M., Fisher B. L., Weisslitz M., Randall S., Almy R. E., Gelep P. T., Schaffer P. A. 1984; Generation of genetic diversity in herpes simplex virus: an antimutator phenotype maps to the DNA polymerase locus. Virology 132:26–37
    [Google Scholar]
  24. Hall J. D., Wang Y., Pierpont J., Berlin M. S., Rundlett S. E., Woodward S. 1989; Aphidicolin resistance in herpes simplex virus type 1 reveals features of the DNA polymerase dNTP binding site. Nucleic Acids Research 17:9231–9244
    [Google Scholar]
  25. Joyce C. M., Steitz T. A. 1987; DNA polymerase I: from crystal structure to function via genetics. Trends in Biochemical Sciences 12:288–292
    [Google Scholar]
  26. Knopf K.-W. 1979; Properties of herpes simplex virus DNA polymerase and characterization of its associated exonuclease activity. European Journal of Biochemistry 98:231–244
    [Google Scholar]
  27. Knopf C. W., Weisshart K. 1990; Comparison of exonucleolytic activities of herpes simplex virus type-1 DNA polymerase and DNase. European Journal of Biochemistry 191:263–273
    [Google Scholar]
  28. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, USA 82:488–192
    [Google Scholar]
  29. Larder B. A., Kemp S. D., Darby G. 1987; Related functional domains in virus DNA polymerases. EMBO Journal 6:169–175
    [Google Scholar]
  30. Marcy A. I., Yager D. R., Coen D. M. 1990; Isolation and characterization of herpes simplex virus mutants containing engineered mutations at the DNA polymerase locus. Journal of Virology 64:2208–2216
    [Google Scholar]
  31. Morrison A., Sugino A. 1994; The 3′–5′ exonucleases of both DNA polymerase δ and ε participate in correcting errors of DNA replication in Saccharomyces cerevisiae . Molecular & General Genetics 242:289–296
    [Google Scholar]
  32. Morrison A., Bell J. B., Kunkel T. A., Sugino A. 1991; Eukaryotic DNA polymerase amino acid sequence required for 3′–5′ exonuclease activity. Proceedings of the National Academy of Sciences, USA 88:9473–9477
    [Google Scholar]
  33. Muzyczka N., Poland R. L., Bessman M. J. 1972; Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. Journal of Biological Chemistry 247:7116–7122
    [Google Scholar]
  34. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. 1985; Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766
    [Google Scholar]
  35. Ostrander M., Cheng Y. C. 1980; Properties of herpes simplex virus type 1 and type 2 DNA polymerase. Biochimica et Biophysica Acta 609:232–245
    [Google Scholar]
  36. Reha-Krantz L. J., Nonay R. L. 1993; Genetic and biochemical studies of bacteriophage T4 DNA polymerase 3′–5′-exonuclease activity. Journal of Biological Chemistry 268:27100–27108
    [Google Scholar]
  37. Reha-Krantz L. J., Stocki S., Nonay R. L., Dimayuga E., Goodrich L. D., Konigsberg W. H., Spicer E. K. 1991; DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies. Proceedings of the National Academy of Sciences, USA 88:2417–2421
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Simon M., Giot L., Faye G. 1991; The 3′–5′ exonuclease activity located in the DNA polymerase subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO Journal 10:2165–2170
    [Google Scholar]
  40. Soengas M. S., Esteban J. A., Lazaro J. M., Bernad A., Blasco M. A., Salas M., Blanco L. 1992; Site-directed mutagenesis at the Exo III motif of ϕ 29 DNA polymerase; overlapping structural domains for the 3′–5′ exonuclease and strand-displacement activities. EMBO Journal 11:4227–1237
    [Google Scholar]
  41. Summers M. D., Smith G. E. 1987 A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Bulletin no. 1555. Texas Agricultural Experiment Station.;
    [Google Scholar]
  42. Taddie J. A., Traktman P. 1993; Genetic characterization of the vaccinia virus DNA polymerase: cytosine arabinoside resistance requires a variable lesion conferring phosphonoacetate resistance in conjunction with an invariant mutation localized to the 3-5′ exonuclease domain. Journal of Virology 67:4323–4336
    [Google Scholar]
  43. Vialard J., Lalumiere M., Vernet T., Briedis D., Alkhatib G., Henning D., Levin D., Richardson C. 1990; Synthesis of the membrane fusion hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the β-galactosidase gene. Journal of Virology 64:37–50
    [Google Scholar]
  44. Wang Y., Woodward S., Hall J. D. 1992; Use of suppressor analysis to identify DNA polymerase mutations in herpes simplex virus which affect deoxynucleoside triphosphate substrate specificity. Journal of Virology 66:1814–1816
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-12-2999
Loading
/content/journal/jgv/10.1099/0022-1317-76-12-2999
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error