1887

Abstract

A full-length copy of a single genomic component of the whitefly-transmitted geminivirus ageratum yellow vein virus (AYVV) has been cloned from an extract of infected originating from Singapore. Sequence analysis shows that the genomic component encodes two virion-sense (V1 and V2) and four complementary-sense open reading frames (C1-C4), typical of DNA A of whitefly-transmitted geminiviruses from the Eastern hemisphere. A genomic component equivalent to DNA B was not detected in extracts of infected . The cloned genomic component produced a systemic infection in and when introduced into plants by agroinoculation, and symptoms were identical to those produced by wild-type virus introduced into these hosts using viruliferous whiteflies. However, attempts to re-establish a systemic infection in either by agroinoculation or by whitefly transmission of the cloned progeny were unsuccessful, suggesting that additional factors are required for infection of the natural host. The significance of as a reservoir host for the economically important geminivirus diseases is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-12-2915
1995-12-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/12/JV0760122915.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-12-2915&mimeType=html&fmt=ahah

References

  1. Argüello-Astorga G. R., Guevara-González R. G., Herrera-Estrella L. R., Rivera-Bustamante R. F. 1994; Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100
    [Google Scholar]
  2. Bedford I. D., Briddon R. W., Brown J. K., Rosell R. C., Markham P. G. 1994; Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology 125:311–325
    [Google Scholar]
  3. Bevan M. 1984; Binary Agrobacterium vectors for plant transformation. Nucleic Acids Research 12:8711–8721
    [Google Scholar]
  4. Bock K. R., Guthrie E. J., Figueiredo G. 1981; A strain of cassava latent virus occurring in coastal districts of Kenya. Annals of Applied Biology 99:151–159
    [Google Scholar]
  5. Coutts R. H. A., Coffin R. S., Roberts E. J. F., Hamilton W. D. O. 1991; The nucleotide sequence of the infectious cloned DNA components of potato yellow mosaic virus. Journal of General Virology 72:1515–1520
    [Google Scholar]
  6. Covey S. N., Hull R. 1981; Transcription of cauliflower mosaic virus DNA. Detection of transcripts, properties and location of the gene encoding the virus inclusion body protein. Virology 111:463–474
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  8. Dry I. B., Rigden J. E., Krake L. R., Mullineaux P. M., Rezaian M. A. 1993; Nucleotide sequence and genome organisation of tomato leaf curl geminivirus. Journal of General Virology 74:147–151
    [Google Scholar]
  9. Etessami P., Watts J., Stanley J. 1989; Size reversion of African cassava mosaic virus coat protein gene deletion mutants during infection of Nicotiana benthamiana . Journal of General Virology 70:277–289
    [Google Scholar]
  10. Fontes E. P. B., Eagle P. A., Sipe P. S., Luckow V. A., Hanley-Bowdoin L. 1994; Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. Journal of Biological Chemistry 269:8459–8465
    [Google Scholar]
  11. Garfinkel D. J., Simpson R. B., Ream L. W., White F. F., Gordon M. P., Nester E. W. 1981; Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153
    [Google Scholar]
  12. Gilbertson R. L., Faria J. C., Ahlquist P., Maxwell D. P. 1993; Genetic diversity in geminiviruses causing bean golden mosaic disease: the nucleotide sequence of the infectious cloned DNA components of a Brazilian isolate of bean golden mosaic geminivirus. Phytopathology 83:709–715
    [Google Scholar]
  13. Hamilton W. D. O., Stein V. E., Coutts R. H. A., Buck K. W. 1984; Complete nucleotide sequence of the infectious cloned DNA components of tomato golden mosaic virus : potential coding regions and regulatory sequences. EMBO Journal 3:2197–2205
    [Google Scholar]
  14. Hanley-Bowdoin L., Elmer J. S., Rogers S. G. 1990; Expression of functional replication protein from tomato golden mosaic virus in transgenic tobacco plants. Proceedings of the National Academy of Sciences, USA 87:1446–1450
    [Google Scholar]
  15. Harrison B. D., Barker H., Bock K. R., Guthrie E. J., Meredith G., Atkinson M. 1977; Plant viruses with circular single-stranded DNA. Nature 270:760–762
    [Google Scholar]
  16. Hepburn A. G., White J., Pearson J., Maunders M. J., Clarke L. E., Prescott A. G., Blundy K. S. 1985; The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. Journal of General Microbiology 131:2961–2969
    [Google Scholar]
  17. Hidayat S. H., Gilbertson R. L., Hanson S. F., Morales F. J., Ahlquist P., Russell D. R., Maxwell D. P. 1993; Complete nucleotide sequences of infectious cloned DNAs of bean dwarf mosaic geminivirus. Phytopathology 83:181–187
    [Google Scholar]
  18. Hoekema A., Hirsch P. R., Hooykaas P. J. J., Schilperoort R. A. 1983; A binary plant vector based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180
    [Google Scholar]
  19. Hong Y. G., Robinson D. J., Harrison B. D. 1993; Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted geminiviruses in cassava. Journal of General Virology 74:2437–2443
    [Google Scholar]
  20. Kheyr-Pour A., Bendahmane M., Matzeit V., Accotto G.-P., Crespi S., Gronenborn B. 1991; Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Research 19:6763–6769
    [Google Scholar]
  21. Klinkenberg F. A., Stanley J. 1990; Encapsidation and spread of African cassava mosaic virus DNA A in the absence of DNA B when agroinoculated to Nicotiana benthamiana . Journal of General Virology 71:1409–1412
    [Google Scholar]
  22. Konaté G., Barro N., Fargette D., Swanson M. M., Harrison B. D. 1995; Occurrence of whitefly-transmitted geminiviruses in crops in Burkina Faso, and their serological detection and differentiation. Annals of Applied Biology 126:121–129
    [Google Scholar]
  23. Lazarowitz S. G. 1987; The molecular characterization of gemini-viruses. Plant Molecular Biology Reporter 4:177–192
    [Google Scholar]
  24. Lazarowitz S. G., Lazdins I. B. 1991; Infectivity and complete nucleotide sequence of the cloned genomic components of a bipartite squash leaf curl geminivirus with a broad host range phenotype. Virology 180:58–69
    [Google Scholar]
  25. Marsh J. L., Erfle M., Wykes E. J. 1984; The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene 32:481–485
    [Google Scholar]
  26. Maule A. J., Hull R., Donson J. 1983; The application of spot hybridisation to the detection of DNA and RNA viruses in plant tissues. Journal of Virological Methods 6:215–224
    [Google Scholar]
  27. Mayo M. A., Martelli G. P. 1993; New families and genera of plant viruses. Archives of Virology 133:496–498
    [Google Scholar]
  28. Morinaga T., Ikegami M., Miura K. I. 1993; The nucleotide sequence and genome structure of mungbean yellow mosaic virus. Molecular Immunology 37:471–476
    [Google Scholar]
  29. Muniyappa V., Swanson M. M., Duncan G. H., Harrison B. D. 1991; Particle purification, properties and epitope variability of Indian tomato leaf curl geminivirus. Annals of Applied Biology 118:595–604
    [Google Scholar]
  30. Navot N., Pichersky E., Zeidan M., Zamir D., Czosnek H. 1991; Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185:151–161
    [Google Scholar]
  31. Padidam M., Beachy R. N., Fauquet C. M. 1995a; Classification and identification of geminiviruses using sequence comparisons. Journal of General Virology 76:249–263
    [Google Scholar]
  32. Padidam M., Beachy R. N., Fauquet C. M. 1995b; Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. Journal of General Virology 76:25–35
    [Google Scholar]
  33. Rigden J. E., Dry I. B., Mullineaux P. M., Rezaian M. A. 1993; Mutagenesis of the virion-sense open reading frames of tomato leaf curl geminivirus. Virology 193:1001–1005
    [Google Scholar]
  34. Rochester D. E., DePaulo J. J., Fauquet C. M., Beachy R. N. 1994; Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. Journal of General Virology 75:477–185
    [Google Scholar]
  35. Rojas M. R., Gilbertson R. L., Russell D. R., Maxwell D. P. 1993; Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77:340–347
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulsen A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  37. Stanley J. 1983; Infectivity of the cloned geminivirus genome requires sequences from both DNAs. Nature 305:643–645
    [Google Scholar]
  38. Stanley J. 1985; The molecular biology of geminiviruses. Advances in Virus Research 30:139–177
    [Google Scholar]
  39. Stanley J. 1995; Analysis of African cassava mosaic virus recombinants suggests strand nicking occurs within the conserved nonanucleotide motif during the initiation of rolling circle DNA replication. Virology 206:707–712
    [Google Scholar]
  40. Stanley J., Gay M. R. 1983; Nucleotide sequence of cassava latent virus DNA. Nature 301:260–262
    [Google Scholar]
  41. Stanley J., Latham J. R. 1992; A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology 190:506–509
    [Google Scholar]
  42. Stanley J., Townsend R. 1985; Characterisation of DNA forms associated with cassava latent virus infection. Nucleic Acids Research 13:2189–2206
    [Google Scholar]
  43. Stanley J., Townsend R. 1986; Infectious mutants of cassava latent virus generated in vivo from intact recombinant DNA clones containing single copies of the genome. Nucleic Acids Research 14:5981–5998
    [Google Scholar]
  44. Sunter G., Bisaro D. M. 1992; Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331
    [Google Scholar]
  45. Sunter G., Hartitz M. D., Hormuzdi S. G., Brough C. L., Bisaro D. M. 1990; Genetic analysis of tomato golden mosaic virus: ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 179:69–77
    [Google Scholar]
  46. Tan H. N. P., Wong S. M. 1993; Some properties of Singapore ageratum yellow vein virus (SAYVV). Journal of Phytopathology 139:165–176
    [Google Scholar]
  47. Torres-Pacheco I., Garzòn-Tiznado J. A., Herrera-Estrella L., Rivera-Bustamante R. F. 1993; Complete nucleotide sequence of pepper huasteco virus: analysis and comparison with bipartite geminiviruses. Journal of General Virology 74:2225–2231
    [Google Scholar]
  48. Townsend R., Stanley J., Curson S. J., Short M. N. 1985; Major polyadenylated transcripts of cassava latent virus and location of the gene encoding coat protein. EMBO Journal 4:33–37
    [Google Scholar]
  49. Townsend R., Watts J., Stanley J. 1986; Synthesis of viral DNA forms in Nicotiana plumbaginifolia protoplasts inoculated with cassava latent virus (CLV); evidence for the independent replication of one component of the CLV genome. Nucleic Acids Research 14:1253–1265
    [Google Scholar]
  50. Wong S. M., Swanson M. M., Harrison B. D. 1993; A geminivirus causing vein yellowing of Ageratum conyzoides in Singapore. Plant Pathology 42:137–139
    [Google Scholar]
  51. Zambryski P., Joos H., Genetello C., Leemans J., Van Montagu M., Schell J. 1983; Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO Journal 2:2143–2150
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-12-2915
Loading
/content/journal/jgv/10.1099/0022-1317-76-12-2915
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error