1887

Abstract

The French neurotropic vaccine, or FNV, was used extensively in Africa to control yellow fever (YF). Although efficacious, the vaccine caused an unacceptable rate of post-vaccinal complications in children and was subsequently replaced by the 17D vaccine. Here we report that the genomes of the wild-type YF virus French viscerotropic virus and its attenuated vaccine derivative, FNV virus from the Institut Pasteur, Paris, (FNV-IP) differ by 77 nucleotides encoding 35 amino acid substitutions. Comparison of FNV-IP and three other isolates of FNV with other YF vaccine strains (17D-204 and 17DD derived from wild-type strain Asibi) revealed that during the two attenuation processes two common nucleotide changes arose that encode two amino acid substitutions: one is in the membrane protein at amino acid 35 (M-35), the other in nonstructural (NS) protein 4B at NS4B-95. These common substitutions may be important in the process of attenuation of viscerotropic disease for humans and monkeys, and/or may be involved in loss of mosquito competence of the vaccine viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-11-2749
1995-11-01
2022-05-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/11/JV0760112749.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-11-2749&mimeType=html&fmt=ahah

References

  1. Ballinger-Crabtree M. E., Miller B. R. 1990; Partial nucleotide sequence of South American yellow fever virus strain 1899/81: structural proteins and NS1. Journal of General Virology 71:2115–2121
    [Google Scholar]
  2. Barrett A. D. T. 1987; Yellow fever vaccines. Bulletin de PInstitut Pasteur 85:103–124
    [Google Scholar]
  3. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organization, expression and replication. Annual Review of Microbiology 44:649–688
    [Google Scholar]
  4. Chambers T. J., Nestorowicz A., Amberg S. M., Rice C. M. 1993; Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. Journal of Virology 67:6797–6807
    [Google Scholar]
  5. Deubel V., Camicas J. L., Pandare D., Robert V., Digoutte J.-P., Germain M. 1981; Developpement de souches sauvages et vaccinales du virus de la fièvre dans les cellules de Aedes aegypti et transmission au souriceau. Annals de PInstitut Pasteur/Virology 132E:41–50
    [Google Scholar]
  6. Deubel V., Ekue E. K., Diop A., Digoutte J.-P. 1986; Introduction analysis of the virulence of the yellow fever virus (Flaviviridae): genetic, immunochemical and comparative studies between the attenuated vaccine strains and their parent strains. Annals de l′Institut Pasteur /Virology 137E:181–192
    [Google Scholar]
  7. Dick G. W. A. 1956; Vaccination by scarification with 17D chick-embryo vaccine In Yellow Fever Vaccination, World Health Organization Monograph Series. no. 30, pp 97–103 Geneva: WHO;
    [Google Scholar]
  8. Dupuy A., Despres P., Cahour A., Girard M., Bouloy M. 1989; Nucleotide sequence comparison of the genome of two 17D-204 yellow fever vaccines. Nucleic Acids Research 17:3989
    [Google Scholar]
  9. Fitzgeorge R., Bradish C. J. 1980; The in vivo differentiation of strains of yellow fever virus in mice. Journal of General Virology 46:1–13
    [Google Scholar]
  10. Gibson C. A., Wills M. R., Gould E. A., Sanders P. G., Barrett A. D. T. 1990; Effect of administration of sodium aurothiomalate on the virulence of yellow fever viruses in adult mice. Vaccine 8:590–594
    [Google Scholar]
  11. Gould E. A., Buckley A., Cammack N., Barrett A. D. T., Clegg J. C. S., Ishak R., Varma M. G. R. 1985; Examination of the immunological relationships between flaviviruses using yellow fever monoclonal antibodies. Journal of General Virology 66:1369–1382
    [Google Scholar]
  12. Gould E. A., Buckley A., Cane P. A., Higgs S., Cammack N. 1989; Use of a monoclonal antibody specific for wild-type yellow fever virus to identify a wild-type antigenic variant in 17D vaccine pools. Journal of General Virology 70:1889–1894
    [Google Scholar]
  13. Guirakhoo F., Bolin R. A., Roehrig J. T. 1992; The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191:921–931
    [Google Scholar]
  14. Heinz F. X., Stiasny K., Puschnerauer G., Holzmann H., Allison S. L., Mandl C. W., Kunz C. 1994; Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198:109–117
    [Google Scholar]
  15. Hahn C. S., Dalrymple J. M., Stauss J. H., Rice C. M. 1987; Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine derived from it. Proceedings of the National Academy of Sciences, USA 84:2019–2023
    [Google Scholar]
  16. Jennings A. D., Whitby J. E., Minor P. D., Barrett A. D. T. 1993a; Comparison of the nucleotide and deduced amino acid sequence of the structural protein genes of the yellow fever 17DD vaccine strain from Senegal with those of other yellow fever vaccine viruses. Vaccine 11:679–681
    [Google Scholar]
  17. Jennings A. D., Whitby J. E., Minor P. D., Barrett A. D. T. 1993b; Nucleotide and deduced amino acid sequence of the envelope protein of the wild-type French viscerotropic strain of yellow fever virus and the French neurotropic vaccine strain derived from it. Virology 192:692–695
    [Google Scholar]
  18. Jennings A. D., Gibson C. A., Miller B. R., Mathews J. H., Mitchell C. J., Roehrig J. T., Wood D. J., Taffs F., Sil B. K., Whitby S. N., Whitby J. E., Monath T. P., Minor P. D., Sanders P. G., Barrett A. D. T. 1994; Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. Journal of Infectious Diseases 169:512–518
    [Google Scholar]
  19. Lepiniec L., Dalgarno L., Huong V. T. Q., Monath T. P., Digoutte J.-P., Deubel V. 1994; Geographical distribution and evolution of yellow fever viruses based on direct sequencing of genomic cDNA fragments. Journal of General Virology 75:417–423
    [Google Scholar]
  20. Lin C., Amberg S. M., Chambers T. J., Rice C. M. 1993; Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at downstream 4A/4B signalase site. Journal of Virology 67:2327–2335
    [Google Scholar]
  21. Mathis C., Sellards A. W., Laigret J. 1928; Sensibilite du Macac rhesus au virus de la fièvre jaune. Comptes Rendus Hebdomadaire des Seances de l′Acadamie des Sciences 186:604–606
    [Google Scholar]
  22. Ni H., Chang G.-J. J., Xm H., Trent D. W., Barrett A. D. T. 1995; Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SAM. Journal of General Virology 76:409–413
    [Google Scholar]
  23. Post P. R., Santos C. N. D., Carvalho R., Cruz A. C. R., Rice C. M. 1992; Heterogeneity in envelope protein sequences and N-linked glycosylation among yellow fever vaccine strains. Virology 188:160–167
    [Google Scholar]
  24. Queen C. G., Korn L. J. 1984; A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Research 12:581–599
    [Google Scholar]
  25. Rice C. M., Lenches E. M., Eddy S. R., Shi S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  26. Sil B. K., Dunster L. M., Ledger T. N., Wills M. R., Minor P. D., Barrett A. D. T. 1992; Identification of envelope protein epitopes that are important in the attenuation process of wild-type yellow fever virus. Journal of Virology 66:4265–4270
    [Google Scholar]
  27. Smith H. H. 1951; Controlling yellow fever. In Yellow Fever pp 539–628 Edited by Strode G. K. New York: McGraw-Hill;
    [Google Scholar]
  28. Theiler M. 1951; The virus. In Yellow Fever pp 43–146 Edited by Strode G. K. New York: McGraw-Hill;
    [Google Scholar]
  29. Wengler G., Wengler G. 1989; Cell-associated West Nile flavivirus is covered with E + Pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. Journal of Virology 63:2521–2526
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-11-2749
Loading
/content/journal/jgv/10.1099/0022-1317-76-11-2749
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error