1887

Abstract

The Epstein—Barr virus (EBV) nuclear antigen 2 (EBNA2) is one of the first EBV-encoded gene products expressed after infection of primary B lymphocytes. EBNA2 is essential for the growth-transforming potential of the virus and it functions as a transcriptional activator of a set of viral and cellular genes. Sequence-specific DNA-binding by EBNA2 has not been demonstrated but the molecule is targeted to specific DNA regions by a cellular protein, RBP-Jκ, which recognizes the GTGGGAA sequence present in the regulatory region of all EBNA2-responsive promoters defined so far. We have determined the contribution of a RBP-Jκ recognition sequence, an adjacent interferon-stimulated response element (ISRE) motif and a PU.1-binding site in the LMP1 regulatory sequence (LRS) to EBNA2-induced transactivation of the promoter by site-directed mutagenesis of LRS-carrying reporter plasmids. EBNA2 responsiveness was reduced by approximately twofold when either or both of the RBP-Jκ-binding and ISRE sequences were mutated. ISRE seemed to function as an EBNA2-independent positive element. On the other hand, mutation of the PU box resulted in a drastic reduction of EBNA2 responsiveness, irrespective of whether the RBP-Jκ site or the ISRE motif was present. A comparative study by deletion mutation identified regions of EBV B95-8 EBNA2 involved in the transactivation of the LMP1 and the EBNA Cp promoters. Two domains of EBNA2 defined by deletion of amino acids 247–337 and 437–476 were found to be important for the activation of both promoters, while two different domains corresponding to residues 4–18 and 118–198 were required solely for the LMP1 promoter. Thus, EBNA2 must activate the LMP1 and Cp promoters by different mechanisms. All deletions involved in transcriptional activation of the two promoters contained regions that are conserved in EBNA2 of B95-8 EBV (type 1), AG876 EBV (type 2) and herpesvirus papio origin.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-11-2669
1995-11-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/11/JV0760112669.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-11-2669&mimeType=html&fmt=ahah

References

  1. Abbot S. D., Rowe M., Cadwallader K., Ricksten A., Gordon J., Wang F., Rymo L., Rickinson A. B. 1990; Epstein-Barr virus nuclear antigen 2 expression of the virus-encoded latent membrane protein. Journal of Virology 64:2126–2134
    [Google Scholar]
  2. Ben-Bassat H., Goldblum N., Mitrani S., Goldblum T., Yoffek J. M., Cohen M. M., Bentwich Z., Ramot B., Klein E., Klein G. 1977; Establishment in continuous culture of a new type of lymphocyte from a ‘Burkitt-like’ malignant lymphoma (line D. G.-75). International Journal of Cancer 19:27–33
    [Google Scholar]
  3. Cohen J. I. 1992; A region of herpes simplex virus VP16 can substitute for a transforming domain of Epstein–Barr virus nuclear protein 2. Proceedings of the National Academy of Sciences, USA 89:8030–8034
    [Google Scholar]
  4. Cohen J. I., Kieff E. 1991; An Epstein–Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. Journal of Virology 65:5880–5885
    [Google Scholar]
  5. Cohen J. I., Wang F., Mannick J., Kieff E. 1989; Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proceedings of the National Academy of Sciences, USA 86:9558–9562
    [Google Scholar]
  6. Cohen J. I., Wang F., Kieff E. 1991; Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. Journal of Virology 65:2545–2554
    [Google Scholar]
  7. Cordier M., Calender A., Billaud M., Zimber U., Rousselet G., Pavlish O., Banchereau J., Tursz T., Bornkamm G., Lenoir G. M. 1990; Stable transfection of Epstein-Barr virus (EBV) nuclear antigen 2 in lymphoma cells containing the EBV P3HR1 genome induces expression of B-cell activation molecules CD21 and CD23. Journal of Virology 64:1002–1013
    [Google Scholar]
  8. Dignam J. D., Lebovitz R. M., Roeder R. G. 1983; Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research 11:1475–1489
    [Google Scholar]
  9. Dou S., Zeng X., Cortes P., Erdjument-Bromage H., Tempst P., Honjo T., Vales L. D. 1994; The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor. Molecular and Cellular Biology 14:3310–3319
    [Google Scholar]
  10. Everett R. D. 1987; A detailed mutational analysis of Vmw 110, a trans-acting transcriptional activator encoded by herpes simplex virus type 1. EM BO Journal 6:2069–2076
    [Google Scholar]
  11. Fåhraeus R., Jansson A., Ricksten A., Sjöblom A., Rymo L. 1990; Epstein–Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proceedings of the National Academy of Sciences, USA 87:7390–7394
    [Google Scholar]
  12. Fåhraeus R., Jansson A., Sjöblom A., Nilsson T., Klein G., Rymo L. 1993; Cell phenotype dependent control of Epstein-Barr virus latent membrane protein 1 (LMP1) gene regulatory sequences. Virology 195:71–80
    [Google Scholar]
  13. Fåhraeus R., Palmqvist L., Nerstedt A., Farzad S., Rymo L., Lain S. 1994; Response to cAMP levels of the Epstein–Barr virus EBNA2-inducible LMP1 oncogene and EBNA2 inhibition of a PP1-like activity. EM BO Journal 13:6041–6051
    [Google Scholar]
  14. Finke J., Fritzen R., Ternes P., Trivedi P., Bross K. J., Lange W., Mertelsmann R., Dölken G. 1992; Expression of bcl-2 in Burkitt’s lymphoma cell lines: induction by latent Epstein–Barr virus genes. Blood 80:459–469
    [Google Scholar]
  15. Ghosh D., Kieff E. 1990; Cis-acting regulatory elements near the Epstein-Barr virus latent-infection membrane protein transcriptional start site. Journal of Virology 64:1855–1858
    [Google Scholar]
  16. Hammerschmidt W., Sugden B. 1989; Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340:393–397
    [Google Scholar]
  17. Henle G., Henle W. 1966; Immunofluorescence in cells derived from Burkitt’s lymphoma. Journal of Bacteriology 91:1248–1256
    [Google Scholar]
  18. Herbst H. F. D., Hummel M., Niedobitek S., Pileri S., Müller-Lantzsch N., Stein H. 1991; Epstein–Barr virus latent membrane protein expression in Hodgkin and Reed–Sternberg cells. Proceedings of the National Academy of Sciences, USA 88:4766–4770
    [Google Scholar]
  19. Hsieh J. J.-D., Hayward S. D. 1995; Masking of the CBFI/RBPJκ transcriptional repression domain by Epstein–Barr virus EBNA2. Science 268:560–563
    [Google Scholar]
  20. Johannsen E., Koh E., Mosialos G., Tong X., Kiee E., Grossman S. R. 1995; Epstein–Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by Jκ and PU.l. Journal of Virology 69:253–262
    [Google Scholar]
  21. Kaye K. M., Izumi K. M., Kieff E. 1993; Epstein–Barr virus latent protein 1 is essential for B-lymphocyte growth transformation. Proceedings of the National Academy of Sciences, USA 90:9150–9154
    [Google Scholar]
  22. King W., Tomas-Powell A., Raab-Traub N., Hawke M. C., Kieff E. 1980; Viral RNA in a restringently infected, growth-transformed cell line. Journal of Virology 36:506–518
    [Google Scholar]
  23. Knutson J. 1990; The level of c-fgr RNA is increased by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization. Journal of Virology 64:2530–2536
    [Google Scholar]
  24. Laux G., Dugrillon F., Eckert C., Adam B., Zimber-Strobl U., Bornkamm G. W. 1994; Identification and characterization of an Epstein-Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. Journal of Virology 68:6947–6958
    [Google Scholar]
  25. Liebowitz D., Kieff E. 1993; Epstein–Barr virus. In The Human Herpesviruses pp 107–172 Edited by Roizman B., Whitley R. J., Lopez C. New York: Raven Press;
    [Google Scholar]
  26. Ling P. D., Rawlins D. R., Hayward S. D. 1993a; The Epstein–Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proceedings of the National Academy of Sciences, USA 90:9237–9241
    [Google Scholar]
  27. Ling P. D., Ryon J. J., Hayward S. D. 1993b; EBNA-2 of herpesvirus papio diverges significantly form the type A and type B EBNA-2 proteins of Epstein–Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. Journal of Virology 67:2990–3003
    [Google Scholar]
  28. Ling P. D., Hsieh J. J. D., Ruf I. K., Rawlins D. R., Hayward S. D. 1994; EBNA-2 upregulation of Epstein–Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. Journal of Virology 68:5375–5383
    [Google Scholar]
  29. MacDonald N. J., Kuhl D., Maguire D., Näf D., Gallant P., Goswamy A., Hug H., Büeler H., Chaturvedi M., De La Fuente J., Ruffner H., Meyer F., Weissman C. 1990; Different pathways mediate virus inducibility of the human INF-αl and INF-β genes. Cell 60:767–779
    [Google Scholar]
  30. Mannick J. B., Cohen J. I., Birkenbach M., Marchini A., Kieff E. 1991; The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B–lymphocyte transformation. Journal of Virology 65:6826–6837
    [Google Scholar]
  31. Miller G. 1990; Epstein–Barr virus: biology, pathogenesis and medical aspects. In Virology 2nd edn, pp 1921–1958 Edited by Fields N. B., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  32. Nilsson T., Sjöblom A., Masucci M. G., Rymo L. 1993; Viral and cellular factors influence the activity of the Epstein–Barr virus BCR2 and BWR1 promoters in cells of different phenotype. Virology 193:774–785
    [Google Scholar]
  33. Pellegrini S., Schindler C. 1993; Early events in signalling by interferons. Trends in Biochemical Sciences 18:338–342
    [Google Scholar]
  34. Rickinson A. B., Young L. S., Rowe M. 1987; Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. Journal of Virology 61:1310–1317
    [Google Scholar]
  35. Ricksten A., Svensson C., Welinder C., Rymo L. 1987; Identification of sequences in Epstein–Barr virus DNA required for the expression of the second Epstein–Barr virus-determined nuclear antigen in COS-1 cells. Journal of General Virology 68:2407–2418
    [Google Scholar]
  36. Ricksten A., Olsson A., Andersson T., Rymo L. 1988; The 5′ flanking region of the gene for the Epstein-Barr virus-encoded nuclear antigen 2 contains a cell type specific cis-acting regulatory element that activates transcription in transfected B-cells. Nucleic Acids Research 16:8391–8410
    [Google Scholar]
  37. Robertson E. S., Grossman S., Johannsen E., Miller C., Lin J., Tomkinson B., Kieff E. 1995; Epstein–Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein Jκ . Journal of Virology 69:3108–3116
    [Google Scholar]
  38. Sadowski H. B., Shuai K., Darnell J. E. Jr, Gilman M. Z. 1993; A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261:1739–1744
    [Google Scholar]
  39. Sjöblom A., Jansson A., Nilsson T., Lain S., Rymo L. 1993; On the mechanism of transcriptional activation of the LMP1 promoter by EBNA2. In The Epstein-Barr Virus and Associated Diseases pp 153–158 Edited by Tursz T., Pagano J. S. Paris & London: John Libbey Eurotext;
    [Google Scholar]
  40. Sjöblom A., Jansson A., Yang W., Lain S., Nilsson T., Rymo L. 1995; PU box-binding transcription factors and a POU domain protein cooperate in the Epstein-Barr virus (EBV) nuclear antigen 2-induced transactivation of the EBV latent membrane protein 1 promoter. Journal of General Virology 76:2679–2692
    [Google Scholar]
  41. Sung N. S., Kenney S., Gutsch D., Pagano J. S. 1991; EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein–Barr virus. Journal of Virology 65:2164–2169
    [Google Scholar]
  42. Swendeman S., Thorley-Lawson D. A. 1987; The activation antigen, BLAST-2, when shed in an autocrine BCGF for normal and transformed B cells. EM BO Journal 6:1637–1642
    [Google Scholar]
  43. Tomkinson B., Robertson E., Kieff E. 1993; Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. Journal of Virology 67:2014–2025
    [Google Scholar]
  44. Tong X., Yalamanchili R., Harada S., Kieff E. 1994; The EBNA-2 arginine–glycine domain is critical but not essential for B-lymphocyte growth transformation; the rest of region 3 lacks essential interactive domains. Journal of Virology 68:6188–6197
    [Google Scholar]
  45. Tsang S.-F., Wang F., Izumi K. M., Kieff E. 1991; Delineation of the cis-acting element mediating EBNA-2 transactivation of latent infection membrane protein expression. Journal of Virology 65:6765–6771
    [Google Scholar]
  46. Tsui S., Schubach W. H. 1994; Epstein–Barr virus nuclear protein 2A forms oligomers in vitro and in vivo through a region required for B-cell transformation. Journal of Virology 68:4287–4294
    [Google Scholar]
  47. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kishimoto T., Kieff E. 1987; Epstein–Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proceedings of the National Academy of Sciences, USA 84:3452–3456
    [Google Scholar]
  48. Wang F., Gregory C., Sample C., Rowe M., Liebowitz D., Murray R., Rickinson A., Kieff E. 1990a; Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. Journal of Virology 64:2309–2318
    [Google Scholar]
  49. Wang F., Tsang S.-F., Kurilla M. G., Cohen J. I., Kieff E. 1990b; Epstein–Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. Journal of Virology 64:3407–3416
    [Google Scholar]
  50. Wang F., Kikutani H., Tsang S.-F., Kishimoto T., Kieff E. 1991; Epstein–Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. Journal of Virology 65:4101–4106
    [Google Scholar]
  51. Weissman C., Weber H. 1986; The interferon genes. Progress in Nucleic Acids Research and Molecular Biology 33:251–300
    [Google Scholar]
  52. Woisetschlaeger M., Jin X. W., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H. 1991; Role for the Epstein–Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proceedings of the National Academy of Sciences, USA 88:3942–3946
    [Google Scholar]
  53. Yalamanchili R., Tong X., Grossman S. E. J., Mosialos G., Kieff E. 1994; Genetic and biochemical evidence that EBNA2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204:634–641
    [Google Scholar]
  54. Yates J. L., Warren N., Sugden B. 1985; Stable replication of plasmids derived from Epstein-Barr virus in a variety of mammalian cells. Nature 313:812–815
    [Google Scholar]
  55. Young L. S., Alfieri C., Hennessy K., Evans H., O’Hara C., Andersson K. G., Ritz J., Shapiro S., Rickinson A., Kieff E., Cohen J. I. 1989; Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lympho-proliferative disease. New England Journal of Medicine 321:1080–1085
    [Google Scholar]
  56. Zimber-Strobl K., Suentzenich K.-O., Laux G., Eick D., Cordier M., Calender A., Billaud M., Lenoir G. M., Bornkamm G. W. 1991; Epstein–Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. Journal of Virology 65:415–423
    [Google Scholar]
  57. Zimber-Strobl U., Strobl L. J., Meitinger C., Hinrichs R., Sakai T., Furukawa T., Honjo T., Bornkamm G. W. 1994; Epstein–Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-Jκ, the homologue of drosophila supressor of hairless . EM BO Journal 13:4973–1982
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-11-2669
Loading
/content/journal/jgv/10.1099/0022-1317-76-11-2669
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error