1887

Abstract

We have analysed, by PCR using consensus primers followed by sequencing, 12 human rhinoviruses (HRVs) in a genomic region including that corresponding to the immunogenic site NIm-II. Together with published information, 21 sequences are available for comparison. In the region analysed, which encodes 112 amino acids, the majority (18) of the serotypes exhibited at least 70% amino acid identity to one another and some serotypes are very closely related. These include HRV-36, -58 and -89, known to exhibit antigenic cross-reactivity, which were shown to differ at only three amino acid positions. Three serotypes, HRV-3, -14 and -72, share at least 84% identity with one another but are less than 66% identical to the majority group. Interestingly, membership of these two molecular clusters correlates with the groupings determined by sensitivity to antivirus drugs, suggesting that they reflect a fundamental division of HRVs. In contrast, there is no correlation with receptor grouping, since the majority group contains members belonging to both HRV receptor groups.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-10-2549
1995-10-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/10/JV0760102549.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-10-2549&mimeType=html&fmt=ahah

References

  1. Abraham G., Colonno R. J. 1984; Many rhinovirus serotypes share the same cellular receptor. Journal of Virology 51:340–345
    [Google Scholar]
  2. Andries K., Dewindt B., Snoeks J., Wouters L., Moereels H., Lewi P. J., Janssen P. A. J. 1990; Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. Journal of Virology 64:1117–1123
    [Google Scholar]
  3. Colonno R. J., Condra J. H., Mlzutani S., Callahan P. L., Davies M.-E., Murko M. A. 1988; Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proceedings of the National Academy of Sciences, USA 85:5449–5453
    [Google Scholar]
  4. Cooney M. K., Fox J. P., Kenny G. E. 1982; Antigenic groupings of 90 rhinovirus serotypes. Infection and Immunity 37:642–647
    [Google Scholar]
  5. Deuchler M., Skern T., Sommergrubber W., Neubauer C., Gruendler P., Fogy I., Blaas D., Kuechler E. 1987; Evolutionary relationships within the human rhinovirus genus: comparison of serotypes 89, 2 and 14. Proceedings of the National Academy of Sciences, USA 84:2605–2609
    [Google Scholar]
  6. Duechler M., Ketter S., Skern T., Kuechler E., Blaas D. 1993; Rhinoviral receptor discrimination: mutational changes in the canyon regions of human rhinovirus types 2 and 14 indicate a different site of interaction. Journal of General Virology 74:2287–2291
    [Google Scholar]
  7. Felsenstein J. 1989 PHYLIP 3.2 Manual. Berkeley: University of California Herbarium;
    [Google Scholar]
  8. Filman D. J., Syed R., Chow M., Macadam A. J., Minor P. D., Hogle J. M. 1989; Structural factors that control conformational transitions and serotype specicificity in type 3 poliovirus. EMBO Journal 8:1567–1580
    [Google Scholar]
  9. Fox J. P. 1976; Is a rhinovirus vaccine possible?. American Journal of Epidemiology 103:345–354
    [Google Scholar]
  10. Francis M. J., Hastings G. Z., Sanger D. V., Clark R. P., Syred A., Clarke B. E., Rowlands D. J., Brown F. 1987; A synthetic peptide which elicits neutralizing antibody against human rhinovirus type 2. Journal of General Virology 68:2687–2691
    [Google Scholar]
  11. Gama R. E., Hughes P. J., Bruce C. B., Stanway G. 1988; Polymerase chain reaction amplification of rhinovirus nucleic acids from clinical material. Nucleic Acids Research 16:9346
    [Google Scholar]
  12. Gama R. E., Horsnell P. R., Hughes P. J., North C., Bruce C. B., Al–Nakib W., Stanway G. 1989; Amplification of rhinovirus specific nucleic acids from clinical samples using the polymerase chain reaction. Journal of Medical Virology 28:73–77
    [Google Scholar]
  13. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. E., McClelland A. 1989; The major human rhinovirus receptor is ICAM–1. Cell 56:839–847
    [Google Scholar]
  14. Hofer F., Gruenberger M., Kowalski H., Machat H., Huet– Tinger M., Kuechler E., Blaas D. 1994; Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proceedings of the National Academy of Sciences, USA 91:1839–1842
    [Google Scholar]
  15. Horsnell P. R. 1990 Molecular approaches to understanding biological diversity in rhino- and enteroviruses PhD thesis, University of Essex; UK.:
    [Google Scholar]
  16. Hughes P. J., North C., Jellis C. H., Minor P. D., Stanway G. 1988; The nucleotide sequence of human rhinovirus IB: molecular relationships within the rhinovirus genus. Journal of General Virology 67:2093–2102
    [Google Scholar]
  17. Kim S., Smith T. J., Chapman M. S., Pevear D. C., Dutko F. J., Felock P. J., Diana G. D., McKinlay M. A. 1989; Crystal structure of human rhinovirus serotype 1A (HRV1A). Journal of Molecular Biology 210:91–111
    [Google Scholar]
  18. Kim K. H., Willingman P., Gong Z. X., Kremer M. J., Chapman M. S., Minor I., Oliveira M. A., Rossmann M. G., Andries K., Diana G. D., Dutko F. J., McKinlay M. A., Pevear D. C. 1993; A comparison of the anti–rhinoviral drug binding pocket in HRV14 and HRV1A. Journal of Molecular Biology 230:206–225
    [Google Scholar]
  19. Leckie G. W. 1988 Cloning and sequencing of the genome of human rhinovirus 9. PhD thesis, University of Reading; UK:
    [Google Scholar]
  20. McCray J., Werner G. 1987; Different rhinovirus serotypes neutralized by antipeptide antibodies. Nature 329:736–737
    [Google Scholar]
  21. Oliveira M. A., Zhao R., Lee W. M., Kremer M. J., Minor I., Rueckert R. R., Diana G. D., Pevear D. C., Dutko F. J., McKinlay M. A., Rossmann M. G. 1993; The structure of human rhinovirus 16. Structure 1:51–68
    [Google Scholar]
  22. Olson N. H., Kolatkar P. R., Oliveira M. A., Cheng R. H., Greve J. M., McClelland A., Baker T. S., Rossmann M. G. 1993; Structure of a human rhinovirus complexed with its receptor molecule. Proceedings of the National Academy of Sciences, USA 90:507–511
    [Google Scholar]
  23. Palmenberg A. C. 1989; Sequence alignments of picornaviral capsid proteins. In Molecular Aspects of Picornavirus Infection and Detection pp 211–241 Edited by Semler B. L., Ehrenfeld E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Pevear D. C., Fancher M. J., Felock P. J., Rossman M. G., Miller M. S., Diana G., Treasurywala A. M., McKinlay M. A., Dukto F. J. 1989; Conformational change in the floor of the human rhinovirus canyon blocks absorption to HeLa cell receptors. Journal of Virology 63:2002–2007
    [Google Scholar]
  25. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H.-J., Johnson J. E., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153
    [Google Scholar]
  26. Rossmann M. G., Palmenberg A. C. 1988; Conservation of the putative receptor attachment site in picornaviruses. Virology 164:373–382
    [Google Scholar]
  27. Sherry B., Mosser A. G., Colonno R. J., Rueckert R. R. 1986; Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. Journal of Virology 57:246–257
    [Google Scholar]
  28. Skern T., Sommergruber W., Blaas D., Gruendler P., Fraun-dorfer F., Pieler C., Fogy I., Kuechler E. 1985; Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Research 13:2111–2126
    [Google Scholar]
  29. Smith T. J., Kremer M. J., Luo M., Vriend G., Arnold E., Kramer G., Rossmann M. G., McKinlay M. A., Diana G. D., Otto M. J. 1986; The site of attachment in human rhinovirus 14 for antiviral agents that inhibit coating. Science 233:1286–1293
    [Google Scholar]
  30. Staden R. 1984a; Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Research 12:505–519
    [Google Scholar]
  31. Staden R. 1984b; Measurements of the effects that coding for a protein sequence has on a DNA-sequence and their use for finding genes. Nucleic Acids Research 12:551–567
    [Google Scholar]
  32. Stanway G. 1990; Structure, function and evolution of picornaviruses. Journal of General Virology 71:2483–2501
    [Google Scholar]
  33. Stanway G. 1994; Rhinoviruses. In Encyclopaedia of Virology pp 1253–1259 Edited by Webster R. G. New York: Academic Press;
    [Google Scholar]
  34. Stanway G., Hughes P. J., Mountford R. C., Minor P. D., Almond J. W. 1984; The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Research 12:7859–7875
    [Google Scholar]
  35. Staunton D. E., Merluzzi V. J., Rothlein R., Barton R., Marling S. D., Springer T. A. 1989; A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853
    [Google Scholar]
  36. Tomassini J. E., Graham D., DeWitt C. M., Lineberger D. W., Rodkey J. A., Colonno R. J. 1989; cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proceedings of the National Academy of Sciences, USA 86:4907–4911
    [Google Scholar]
  37. Uncapher C. R., DeWitt C. M., Colonno R. J. 1991; The major and minor group receptor families contain all but one human rhinovirus serotype. Virology 180:814–817
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-10-2549
Loading
/content/journal/jgv/10.1099/0022-1317-76-10-2549
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error