1887

Abstract

Bovine rotavirus VP8*, N-terminal trypsin cleavage product of VP4, was produced in . To examine if this antigen could induce neutralizing antibody responses, different species of animals were immunized with the recombinant VP8* protein. The VP8* antigen was found to stimulate a neutralizing immune response in rabbits. When VP8*-immunized mice were exposed to bovine rotavirus strain C486, significantly higher antibody responses were observed than if they were only exposed to C486. To simulate a current vaccination protocol in the field with livestock, mice were exposed to live C486 virus first and then to VP8*. These mice had the elevated immune responses indicating that VP8* could boost immunity in primed mice. The immune response to VP8* was also tested in pregnant cows. The efficacy of VP8* in stimulating milk antibody was compared with a commercial inactivated vaccine. Differences in colostral antibody titres between VP8*-vaccinated and unvaccinated cows were statistically significant ( < 0.05) and equivalent to the commercial vaccine ( = 0.0569). The milk antibody titres on day 10 were comparable between VP8*- and commercial vaccine-vaccinated animals and were significantly higher ( < 0.05) than in unvaccinated controls. Furthermore, rabbit and bovine antibodies induced by VP8* were able to neutralize different P types of bovine rotaviruses to varying degrees, suggesting that serotype-specific and cross-reactive epitope(s) are present on the VP8* protein of rotavirus. Taken together, -expressed VP8* may be useful as a subunit vaccine candidate for bovine rotavirus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-10-2477
1995-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/10/JV0760102477.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-10-2477&mimeType=html&fmt=ahah

References

  1. Acres S. D. 1977; The epidemiology of the calf scour complex in western Canada. In Proceedings of the Minisymposium on Neonatal Diarrhea in Calves and Pigs, May, 1976. Saskatoon: Veterinary Infectious Disease Organization, University of Saskatchewan;
    [Google Scholar]
  2. Acres S. D., Babiuk L. A. 1978; Studies on rotaviral antibody in bovine serum and lacteal secretions, using radioimmunoassay. Journal of American Veterinary Medicine Association 173:555–559
    [Google Scholar]
  3. Aha P. M., Sabara M. I. 1990; Development of a rotavirus plaque assay using Sephadex G-75. Journal of Virological Methods 28:25–32
    [Google Scholar]
  4. Arias C. F., Garcia G., Lopez S. 1989; Priming for rotavirus neutralizing antibodies by a VP4 protein derived synthetic peptide. Journal of Virology 63:5393–5398
    [Google Scholar]
  5. Babiuk L. A., Mohammed K., Spence L., Fauvel M., Petro R. 1977; Rotavirus isolation and cultivation in the presence of trypsin. Journal of Clinical Microbiology 6:610–617
    [Google Scholar]
  6. Babuik L. A., Sabara M., Hudson G. R. 1985; Rotavirus and coronavirus infections in animals. Progress in Veterinary Micro-biology and Immunology 1:80–20
    [Google Scholar]
  7. Besser T. E., McGuire T. C., Gay C. C., Pritchett L. C. 1988; Transfer of functional immunoglobulin G (IgG) antibody into the gastrointestinal tract accounts for IgG clearance in calves. Journal of Virology 62:2234–2237
    [Google Scholar]
  8. Bridger J. C. 1994; A definition of bovine rotavirus virulence. Journal of General Virology 75:2807–2812
    [Google Scholar]
  9. Bridger J. C., Woode G. N. 1975; Neonatal calf diarrhoea: identification of a reovirus-like (rotavirus) agent in faeces by immunofluorescense and immune electron microscopy. British Veterinary Journal 131:528–535
    [Google Scholar]
  10. Brussow H., Eichhorn W., Rohwedder A., Snodgrass D., Sidoti J. 1991; Cattle develop neutralizing antibodies to rotavirus serotypes which could not be isolated from faeces of symptomatic calves. Journal of General Virology 72:1559–1567
    [Google Scholar]
  11. Clark S. M., Roth J. R., Clark M. L., Barnett B. B., Spendlove R. S. 1981; Trypsin enhancement of rotavirus infectivity: mechanism of action. Journal of Virology 39:816–822
    [Google Scholar]
  12. Crawford S. E., Labbe M., Cohen J., Burroughs M. H., Zhou Y. J., Estes M. K. 1994; Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. Journal of Virology 68:5945–5952
    [Google Scholar]
  13. Earl P. L., Moss B., Morrison R. P., Wehrly K., Nishio J., Chesebro B. 1986; T-lymphocyte priming and protection against Friend leukemia by vaccinia retrovirus env gene recombinant. Science 234:728–731
    [Google Scholar]
  14. Emini E. A., Berger J., Hughes J. V., Mitra S. W., Linemeyer D. L. 1985; Priming of anti-hepatitis-A virus antibody response by poliovirus-specific synthetic peptides: localization of potential antigenic sites of hepatitis-A virus neutralization. In Vaccines 85 pp 217–220 Edited by Lerner R. A., Chanock R. M., Brown F. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Estes M. K., Graham D. Y., Mason B. B. 1981; Proteolytic enhancement of rotavirus infectivity: molecular mechanism. Journal of Virology 39:879–888
    [Google Scholar]
  16. Flewett T. H., Babiuk L. A. 1984; Prospect of rotavirus vaccines in humans and animals. In Control of Virus Diseases pp 57–65 Edited by Kurstak E., Marusyk R. G. New York: Marcel Dekker;
    [Google Scholar]
  17. Gorziglia M., Larralde G., Kapikian A. Z., Chanock R. M. 1990; Antigenic relationships among human rotaviruses as determined by outer capsid protein VP4. Proceedings of the National Academy of Sciences, USA 87:7155–7159
    [Google Scholar]
  18. Greenberg H. B., Valdesuso J., van Wyke K., Midthun K., Walsh M., McAuliffe V., Wyatt R. G., Kalica A. R., Flores J., Hoshino Y. 1983; Production and preliminary characterization of monoclonal antibodies directed at two surface proteins of rhesus rotavirus. Journal of Virology 54:791–797
    [Google Scholar]
  19. Hardy M. E., Woode G. N., Xu Z., Gorziglia M. 1991; Comparative amino acid sequence analysis of VP4 for VP7 serotype 6 bovine rotavirus strains NCDV, B641, and UK. Journal of Virology 65:5535–5538
    [Google Scholar]
  20. Hardy M. E., Gorziglia M., Woode G. N. 1992; Amino acid sequence analysis of bovine rotavirus B223 reveals a unique outer capsid protein VP4 and confirms a third bovine VP4 type. Virology 191:291–300
    [Google Scholar]
  21. Ijaz M. K., Attah-Poku S. K., Redmond M. J., Parker M. D., Sabara M. I., Babiuk L. A. 1991; Heterotypic passive protection induced by synthetic peptides corresponding to VP7 and VP4 of bovine rotavirus. Journal of Virology 65:3106–3113
    [Google Scholar]
  22. Kalica A. R., Flores J., Greenberg H. B. 1983; Identification of the rotaviral gene that codes for hemagglutination and protease-enhanced plaque formation. Virology 125:194–205
    [Google Scholar]
  23. Larralde G., Li B., Kapikian A. Z., Gorziglia M. 1991; Serotype-specific epitope(s) present on the VP8 subunit of rotavirus VP4 protein. Journal of Virology 65:3213–3218
    [Google Scholar]
  24. Lizano M., Lopez S., Arias C. F. 1991; The amino-terminal half of rotavirus SA-114fM VP4 protein contains a hemagglutination domain and primes for neutralizing antibodies to the virus. Journal of Virology 65:1381–1391
    [Google Scholar]
  25. Mackow E. R., Shaw R. D., Matsui S. M., Vo P. T., Dan M. N., Greenberg H. B. 1988; Characterization of rhesus rotavirus VP3 gene: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proceedings of National Academy of Sciences, USA 85:465–169
    [Google Scholar]
  26. Matsui S. M., Offit P. A., Vo P. T., Mackow E. R., Benfield D. A., Shaw R. D., Padilla-Noriega L., Greenberg H. B. 1989; Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to the heterotypic neutralization domain of VP7 and the VP8 fragment of VP4. Journal of Clinical Microbiology 27:780–782
    [Google Scholar]
  27. Mebus C. A., Underdahl N. R., Rhodes M. B., Twiehaus M. J. 1969; Calf diarrhea (scours) reproduced with a virus from a field outbreak. University of Nebraska Research Bulletin 233:1–6
    [Google Scholar]
  28. Mebus C. A., White R. G., Bass E. P., Twiehaus M. J. 1973; Immunity to neonatal calf diarrhea virus. Journal of the American Veterinary Medical Association 163:880–883
    [Google Scholar]
  29. Offit P. A., Shaw R. D., Greenberg H. B. 1986; Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to surface proteins VP3 and VP7. Journal of Virology 58:700–703
    [Google Scholar]
  30. Parwani A. V., Hussein H. A., Rosen B. I., Lucchelli A., Navarro L., Saif L. J. 1993; Characterization of field strains of group A bovine rotaviruses by using polymerase chain reactiongenerated G and P type-specific cDNA probes. Journal of Clinical Microbiology 31:2010–2015
    [Google Scholar]
  31. Potter A. A., Cox G., Parker M., Babiuk L. A. 1987; The complete nucleotide sequence of bovine rotavirus C486 gene 4 cDNA. Nucleic Acids Research 15:4361
    [Google Scholar]
  32. Ratafia M. 1987; Worldwide opportunities in genetically engineered vaccines. Bio/Technology 5:1154–1158
    [Google Scholar]
  33. Saif L. J., Smith K. L. 1983; A review of rotavirus immunization of cows and passive protection in calves. In Fourth International Symposium on Neonatal Diarrhea pp 394–423 Edited by Acres S. D. Saskatoon: Veterinary Infectious Disease Organization, University of Saskatchewan;
    [Google Scholar]
  34. Saif L. J., Redman D. R., Smith K. L., Theil K. W. 1983; Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from immunized or nonimmunized cows. Infection and Immunity 41:1118–1131
    [Google Scholar]
  35. Snodgrass D. R., Fahey K. J., Wells P. W., Campbell I., Whitelaw A. 1980; Passive immunity in calf rotavirus infections: Maternal vaccination increases and prolongs immunoglobulin G1 antibody secretion in milk. Infection and Immunity 28:344–349
    [Google Scholar]
  36. Snodgrass D. R., Terzolo H. R., Sherwood D., Campbell I., Menzies J. D., Synge B. A. 1986; Aetiology of diarrhoea in young calves. Veterinary Record 119:31–34
    [Google Scholar]
  37. Snodgrass D. R., Fitzgerald T., Campell I., Scott F. M. M., Browning G. F., Miller D. L., Herring A. J., Greenberg H. B. 1990; Rotavirus serotypes 6 and 10 predominate in cattle. Journal of Clinical Microbiology 28:504–507
    [Google Scholar]
  38. Van Drunen Littel-van den Hurk S., Parker M. D., Massie B., van den Hurk J. V., Harland R., Babiuk L. A., Zamb T. Z. 1993; Protection of cattle from BHV-1 infection by immunization with recombinant glycoprotein gIV. Vaccine 11:25–35
    [Google Scholar]
  39. Woode G. N. 1978; Epizootiology of bovine rotavirus infection. Veterinary Record 103:44–46
    [Google Scholar]
  40. Woode G. N., Kelso N. E., Simpson T. F., Gaul S. K., Evans L. E., Babiuk L. A. 1983; Antigenic relationships among some rotavirus: serum neutralization and cross-protection in gnotobiotic calves. Journal of Clinical Microbiology 18:358–364
    [Google Scholar]
  41. Yeung M. C., Gill M. J., Alibhai S. S., Shahrabadi M. S., Lee P. W. K. 1987; Purification and characterization of the reovirus cell attachment protein a\ . Virology 156:377–385
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-10-2477
Loading
/content/journal/jgv/10.1099/0022-1317-76-10-2477
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error