1887

Abstract

SUMMARY

Latent membrane protein 2A (LMP-2A) is expressed in Epstein—Barr virus transformed B lymphocytes and has been detected in various types of EBV-associated malignancies. LMP-2A interferes with membrane signal transduction through phosphorylation of its hydrophilic N-terminal domain and binding of the cellular tyrosine kinases encoded by and , the domain can block calcium influx and participate in signal transduction inducing cytokine production. These two activities are differently affected by site-directed mutagenesis of potentially phosphorylated amino acid residues. Several potential tyrosine protein kinase recognition motifs have been identified including an antigen recognition motif (ARAM). ARAMs are activated by tyrosine phosphorylation that enables binding of tyrosine protein kinases such as and . To assess the importance of potential sequence variation in natural EBV infection and in tumourigenesis, the sequence of the LMP-2A N-terminal domain was determined in 28 EBV isolates, including 14 fresh tumour isolates. Comparison of the corresponding sequences with the prototype B95 strain indicates that LMP-2 is generally conserved with a few base pair changes resulting in conservative amino acid changes in an occasional isolate. However, five single-base loci were frequently mutated, resulting in three patterns of sequence polymorphism in exon 1 of LMP-2A. The patterns did not segregate with EBV Type 1 or Type 2 and were detected in both lymphoid and epithelial tissues. Four of the most frequent mutations at loci 166627, 166750, 166796 and 166805 (codons 23, 63, 79 and 82) could potentially affect tyrosine protein kinase binding motifs. The pivotal tyrosines (codons 74 and 85) and leucines (codons 77 and 88) of the LMP-2 ARAM were not affected in any of the isolates, suggesting that ARAM function is important for EBV infection . However, the interspacing positions 79 and 82 were distinct in more than 50% of the isolates. These prevalent polymorphisms could influence interaction of the LMP-2 cytoplasmic domain with specific cellular ligand proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-1-139
1995-01-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/1/JV0760010139.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-1-139&mimeType=html&fmt=ahah

References

  1. Abdel-Hamid M., Chen J. J., Constantine N., Massoud M., Raab-Traub N. 1992; EBV strain variation: geographical distribution and relation to disease state. Virology 190:168–175
    [Google Scholar]
  2. Baer R., Bankier A., Biggins M., Deininger P., Farrell P., Gibson T., Hatfull G., Hudson G., Satchwell S., Sequin C., Tuffnell P., Barrell B. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211
    [Google Scholar]
  3. Beaufils P., Choquet D., Mamoun R. Z., Malissen B. 1993; The (YXXL/I)2 signalling motif found in the cytoplasmic segments of the bovine leukemia virus envelope protein and Epstein-Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events. EMBO Journal 12:5105–5112
    [Google Scholar]
  4. Brooks L., Yao Q. Y., Rickinson A. B., Young L. S. 1992; Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. Journal of Virology 66:2689–2697
    [Google Scholar]
  5. Burkhardt A. L., Bolen J. B., Kieff E., Longnecker R. 1992; An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. Journal of Virology 66:5161–5167
    [Google Scholar]
  6. Busson P., Ganem G., Flores P., Mugneret F., Clausse B., Caillou B., Braham K., Wakasugi H., Lipinski M., Tursz T. 1988; Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas. International Journal of Cancer 42:5099–606
    [Google Scholar]
  7. Busson P., McCoy R., Sadler R., Gilligan K., Tursz T., Raab-Traub N. 1992; Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. Journal of Virology 66:3257–3262
    [Google Scholar]
  8. Cambier J. C., Campbell K. S. 1992; Membrane immunoglobulin and its accomplices: new lessons from an old receptor. FASEB Journal 6:3207–3217
    [Google Scholar]
  9. Clark M. R., Campbell K. S., Kazlauskas A., Johnson S. A., Hertz M., Potter T. A., Pleiman C., Cambier J. C. 1992; The B Cell antigen receptor complex: association of Ig-a and lg-b with distinct cytoplasmic effectors. Science 258:123–126
    [Google Scholar]
  10. Effert P., McCoy R., Abdel-Hamid M., Flynn K., Zhang Q., Busson P., Tursz T., Liu E., Raab-Traub N. 1992; Alterations of the p53 gene in nasopharyngeal carcinoma. Journal of Virology 66:3768–3775
    [Google Scholar]
  11. Ernberg I., Falk K., Minarovits J., Busson P., Tursz T., Masuccj M. J., Klein G. 1989; The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr Virus. Journal of General Virology 70:2989–3002
    [Google Scholar]
  12. Frech B., Zimber-Strobl U., Suentzenich K. O., Pavlish O., Lenoir G. M., Bornkamm G. W., Mueller-Lantzsch N. 1990; Identification of Epstein-Barr virus terminal protein 1 (TP1) in extracts of four lymphoid cell lines, expression in insect cells, and detection of antibodies in human sera. Journal of Virology 64:2759–2767
    [Google Scholar]
  13. George D. G., Barker W. C., Hunt L. T. 1990; Mutation data matrix and its uses. Methods in Enzymology 183:333–351
    [Google Scholar]
  14. Gregory C. D., Rowe M., Rickinson A. B. 1990; Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt’s lymphoma cell line. Journal of General Virology 71:1481–1495
    [Google Scholar]
  15. Heller M., Dambaugh T., Kieff E. 1981; Epstein-Barr virus DNA. IX. Variation among viral DNAs from producer and nonproducer infected cells. Journal of Virology 38:632–648
    [Google Scholar]
  16. Hu L. F., Zabarovsky E. R., Chen F., Cao S. L., Ernberg I., Klein G., Winberg G. 1991; Isolation and sequencing of the Epstein-Barr virus BNLF-1 (LMP1) from a Chinese nasopharyngal carcinoma. Journal of General Virology 72:2399–2409
    [Google Scholar]
  17. Hurley E. A., Klaman L. D., Agger S., Lawrence J. B., Thorley-Lawson D. A. 1991; The prototypical Epstein-Barr virus-transformed lymphoblastoid cell line IB4 is an unusual variant containing integrated but no episomal viral DNA. Journal of Virology 65:3958–3963
    [Google Scholar]
  18. Kemp B. E., Pearson R. B. 1990; Protein kinase recognition sequence motifs. Trends in Biochemical Sciences 15:342–346
    [Google Scholar]
  19. Kieff E., Liebowitz D. 1990; Epstein-Barr virus and its replication. In Virology, 2.1889–1920 Fields B., Knipe D. New York: Raven Press;
    [Google Scholar]
  20. Laux G., Perricaudet M., Farrell P. J. 1988; A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO Journal 7:769–774
    [Google Scholar]
  21. Longnecker R., Kieff E. 1990; A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. Journal of Virology 64:2319–2326
    [Google Scholar]
  22. Longnecker R., Druker B., Roberts T. M., Kieff E. 1991; An Epstein-Barr virus protein associated with cell growth transform- ation interacts with a tyrosine kinase. Journal of Virology 65:3681–3692
    [Google Scholar]
  23. Longnecker R., Miller C. L., Tomkinson B., Miao X. Q., Kieff E. 1993; Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. Journal of Virology 67:5068–5074
    [Google Scholar]
  24. Lung M. L., Chang R. S., Huang M. L., Guo H. Y., Choy D., Sham J., Tsao S. Y., Cheng P., Ng M. H. 1990; Epstein-Barr virus genotypes associated with nasopharyngeal carcinoma in Southern China. Virology 177:44–53
    [Google Scholar]
  25. Miller C. L., Lee J. H., Kieff E., Longnecker R. 1994; An integral membrane protein (LMP2) blocks reactivation of Epstein- Barr virus from latency following surface immunoglobulin cross- linking. Proceedings of the National Academy of SciencesUSA 91:772–776
    [Google Scholar]
  26. Miller W. E., Edwards R. H., Walling D. M., Raab-Traub N. 1994; Sequence variation in the Epstein-Barr virus latent mem- brane protein 1. Journal of General Virology 75:2729–2740
    [Google Scholar]
  27. Qu L., Rowe D. T. 1992; Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. Journal of Virology 66:3715–24
    [Google Scholar]
  28. Rabson M., Gradoville L., Heston L., Miller G. 1982; Non- immortalizing P3J-HR-1 Epstein-Barr Virus; a deletion mutant of its transforming parent, Jijoye. Journal of Virology 44:834–844
    [Google Scholar]
  29. Sample J., Liebowitz D., Kieff E. 1989; Two related Epstein- Barr virus membrane proteins are encoded by separate genes. Journal of Virology 63:933–937
    [Google Scholar]
  30. Sample J. E., Young L. S., Martin B., Rickinson A., Kieff E. 1990; Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. Journal of Virology 64:4084–4092
    [Google Scholar]
  31. Sato H., Takimoto T., Hatano M., Pagano J. S., Raab-Traub N. 1989; Concatameric replication of the Epstein-Barr virus: the structure of the termini in virus-producer and newly transformed cell lines. Journal of General Virology 70:717–727
    [Google Scholar]
  32. Sun X. J., Rothenberg P., Kahn C. R., Backer J. M., Araki E., Wilden P. A., Cahill D. A., Goldstein B. J., White M. F. 1990; Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77
    [Google Scholar]
  33. Takada K., Ono Y. 1989; Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. Journal of Virology 63:445–149
    [Google Scholar]
  34. Takimoto T., Kamide M., Umeda R. 1984; Establishment of Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA)- positive nasopharyngeal carcinoma hybrid cell line (NPC-KT). Acta Otorhinolaryngologica 239:87–92
    [Google Scholar]
  35. Weiss A. 1993; T-cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73:209–212
    [Google Scholar]
  36. Zimber U., Adldinger H. K., Lenoir G. M., Vuillaume M., Knebel-Doeberitz M. V., Laux G., Desgranges C., Wittman P., Freese U. K., Schneider U., Bornkamm G. W. 1986; Geographical prevalence of two types of Epstein-Barr virus. Virology 154:56–66
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-1-139
Loading
/content/journal/jgv/10.1099/0022-1317-76-1-139
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error