1887

Abstract

Polyclonal antibodies were raised to partial and full-length synthetic peptides of human papillomavirus type 16 (HPV-16) E5. Antisera specificity for HPV-16 E5 was demonstrated by their ability to recognize not only their peptide immunogens but also full-length peptide and a glutathione -transferase-E5 fusion protein. The most reactive antiserum, PE-6, raised to a full-length peptide, was used in Western blot analysis to identify HPV-16 E5 protein from exfoliated cervical cells. A strong, single band at approximately 20K was detected in two of six HPV-16-positive samples from women with a history of low-grade cervical intraepithelial neoplasia. The apparent by SDS-PAGE suggests that HPV-16 E5 forms homodimers but not through cysteine linkage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-9-2451
1994-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/9/JV0750092451.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-9-2451&mimeType=html&fmt=ahah

References

  1. Baker C. C., Phelps W. C., Lindgren V., Braun M. J., Gonda M. A., Howley P. M. 1987; Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. Journal of Virology 61:962–971
    [Google Scholar]
  2. Bedell M. A., Jones K. H., Grossman S. R., Laimins L. A. 1989; Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells. Journal of Virology 63:1247–1255
    [Google Scholar]
  3. Bubb V., McCance D. J., Schlegel R. 1988; DNA sequence of the HPV-16 E5 ORF and the structural conservation of its encoded protein. Virology 163:243–246
    [Google Scholar]
  4. Burkhardt A., DiMaio D., Schlegel R. 1987; Genetic and biochemical definition of the bovine papillomavirus E5 transforming protein. EMBO Journal 6:2381–2385
    [Google Scholar]
  5. Cason J., Patel D., Naylor J., Lunney D., Shepherd P. S., Best J. M., McCance D. J. 1989; Identification of immunogenic regions of the major coat protein of human papillomavirus type 16 that contain type-restricted epitopes. Journal of General Virology 70:2973–2987
    [Google Scholar]
  6. Cason J., Kambo P. K., Jewers R. J., Chrystie I. L., Best J. M. 1993; Mapping of linear B cell epitopes on capsid proteins of bovine papillomavirus: identification of three external type-restricted epitopes. Journal of General Virology 74:2669–2677
    [Google Scholar]
  7. Conrad M., Bubb V. J., Schlegel R. 1993; The human papillomavirus type 6 and 16 E5 proteins are membrane associated proteins which associate with the 16 kD pore forming protein. Journal of Virology 67:6170–6178
    [Google Scholar]
  8. Doolittle R. F. 1986 Of URFs and ORFs: A Primer on Flow to Analyse Derived Amino Acid Sequences Mill Valley: University Science Books;
    [Google Scholar]
  9. Dyson N., Howley P. M., Munger K., Harlow E. 1989; The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937
    [Google Scholar]
  10. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. 1987; Strategies for epitope analysis using peptide synthesis. Journal of Immunological Methods 102:259–274
    [Google Scholar]
  11. Halbert C. L., Galloway D. A. 1988; Identification of the E5 open reading frame of human papillomavirus type 16. Journal of Virology 62:1071–1075
    [Google Scholar]
  12. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Hawley-Nelson P., Vousden K. H., Hubbert N. L., Lowy D. R., Schiller J. T. 1989; E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO Journal 8:3905–3910
    [Google Scholar]
  14. Jewers R. J., Hildebrandt P., Ludlow J. W., Kell B., McCance D. J. 1992; Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. Journal of Virology 66:1329–1335
    [Google Scholar]
  15. Johannsson A. 1990; Enzyme amplification. In ELISA in the Clinical Microbiology Laboratory pp. 284–297 Wreghill T. G., Morgan-Capner P. Edited by London: Public Health Laboratory Service;
    [Google Scholar]
  16. Kahn T., Friel H., Copeland N. G., Gilbert D. J., Jenkins N. A., Gissmann L., Kramer J., Zur Hausen H. 1992; Molecular cloning, analysis and chromosomal localisation of a mouse genomic sequence related to human papillomavirus type 18 E5 region. Molecular Carcinogenesis 6:88–99
    [Google Scholar]
  17. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  18. Leechanachai P., Banks L., Moreau F., Matlashewski G. M. 1992; The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7:19–25
    [Google Scholar]
  19. Leptak C., Ramon S., Cajal Y., Kulke R., Horowitz B. H., Riese D. J.II Dotto G. P., DiMaio D. 1991; Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. Journal of Virology 65:7078–7083
    [Google Scholar]
  20. Manos M., Ting Y., Wright D., Lewis A. J., Broker T. R., Wolinsky S. M. 1989; Use of polymerase chain reaction amplification for the detection of human papillomavirus. Cancer Cells 7:209–214
    [Google Scholar]
  21. Matlashewski G., Schneider J., Banks L., Jones N., Murray A., Crawford L. 1987; Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO Journal 6:1741–1746
    [Google Scholar]
  22. Munger K., Phelps W. C., Bubb V., Howley P. M., Schlegel R. 1989; The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. Journal of Virology 63:4417–4421
    [Google Scholar]
  23. Rosenberg A. H., Lade B. N., Chui D., Lin S., Dunn J. J., Studier F. W. 1987; Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56:125–135
    [Google Scholar]
  24. Saiki R. K., Bugawan T. L., Horn G. T., Mullis K. B., Erlich H. A. 1986; Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature; London: 324163–166
    [Google Scholar]
  25. Schagger H., Von Jaggow G. 1987; Tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166:368–379
    [Google Scholar]
  26. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136
    [Google Scholar]
  27. Schneider-Gadicke A., Schwarz E. 1986; Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO Journal 5:2285–2292
    [Google Scholar]
  28. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., Zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature; London: 314111–114
    [Google Scholar]
  29. Smith D. B., Johnson K. S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione 5-transferase. Gene 67:31–40
    [Google Scholar]
  30. Smotkin D., Wettstein F. O. 1986; Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer- derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences, U.S.A 83:4680–4684
    [Google Scholar]
  31. Stoler M. H., Rhodes C. R., Whitbeck A., Wolinsky S. M., Chow L. T., Broker T. R. 1992; Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Human Pathology 23:117–127
    [Google Scholar]
  32. Straight S. M., Hinkle P. M., Jewers R. J., McCance D. J. 1993; The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. Journal of Virology 67:4521–4532
    [Google Scholar]
  33. Van Den Brule A. J. C., Meijer C. J. L. M., Bakels V., Kenemans P., Walboomers J. M. M. 1990; Rapid detection of human papillomavirus in cervical scrapes by combined general primer-mediated and type specific polymerase chain reaction. Journal of Clinical Microbiology 28:2739–2743
    [Google Scholar]
  34. Zur Hausen H. 1988; Papillomaviruses in human cancers. Molecular Carcinogenesis 1:147–150
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-9-2451
Loading
/content/journal/jgv/10.1099/0022-1317-75-9-2451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error