Removal of the cleavage site of recombinant feline immunodeficiency virus envelope protein facilitates incorporation of the surface glycoprotein in immune-stimulating complexes Free

Abstract

Recombinant vaccinia viruses were constructed that expressed the complete gene of feline immunodeficiency virus with or without the nucleotide sequence encoding the cleavage site between the surface (SU) protein and the transmembrane (TM) protein. The removal of this cleavage site resulted in the expression of a 150K protein that was processed into a 130K protein and was not cleaved into the SU and the TM proteins. Removal of the cleavage site also facilitated incorporation of the SU protein in immune-stimulating complexes (iscoms). Antibody responses to both an SU and a TM peptide representing two immunodominant B cell epitopes were measured. These were higher in cats immunized with iscoms prepared from the cleavage site-deleted envelope protein than in cats immunized with iscoms prepared from the native envelope protein or immunized with the envelope protein and the adjuvant Quil A.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-8-2097
1994-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/8/JV0750082097.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-8-2097&mimeType=html&fmt=ahah

References

  1. Ackley C. D., Yamamoto J. K., Levy N., Pedersen N. C., Cooper M. 1990; Immunologic abnormalities in pathogen-free cats experimentally infected with feline immunodeficiency virus. Journal of Virology 64:5652–5655
    [Google Scholar]
  2. Avrameas A., Guillet J. G., Chouchane L., Moraillon A., Sonigo P., Strosberg A. D. 1992; Localisation of three epitopes of the env protein of feline immunodeficiency virus. Molecular Immunology 29:565–572
    [Google Scholar]
  3. Brunner D., Pedersen N. C. 1989; Infection of peritoneal macrophages in vitro and in vivo with feline immunodeficiency virus. Journal of Virology 63:5483–5488
    [Google Scholar]
  4. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: co-expression of β-galactosidase provides visual screening of recombinant virus plaques. Molecular and Cellular Biology 5:3403–3409
    [Google Scholar]
  5. Claassen I., Osterhaus A. 1992; The iscom structure as an immune enhancing moiety: experience in viral systems. Research in Immunology 143:531–541
    [Google Scholar]
  6. De Vries P., Van Binnendijk R. S., Van Der Marel P., Van Wezel A. L., Voorma H. O., Sundquist B., UytdeHaag F. G. C. M., Osterhaus A. D. M. E. 1988; Measles virus fusion protein presented in an immune-stimulating complex (iscom) induces haemolysis-inhibiting and fusion-inhibiting antibodies, virus-specific T cells and protection in mice. Journal of General Virology 69:549–559
    [Google Scholar]
  7. Dow S. W., Poss M. L., Hoover E. A. 1990; Feline immuno-deficiency virus: a neurotropic lentivirus. AIDS 3:658–668
    [Google Scholar]
  8. Earl P. L., Koenig S., Moss B. 1991; Biological and immunological properties of human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. Journal of Virology 65:31–41
    [Google Scholar]
  9. Heeg K., Kuon W., Wagner H. 1991; Vaccination of class I major histocompatibility complex (MHC)-restricted murine CD8+ cytotoxic T lymphocytes towards soluble antigens: immunostimu-lating-ovalbumin complexes enter the class I MHC-restricted antigen pathway and allow sensitization against the immunodominant peptide. European Journal of Immunology 21:1523–1527
    [Google Scholar]
  10. Hoffmann-Fezer G., Thum J., Ackley C., Herbold M., Mysliwietz J., Thefeld S., Hartmann K., Kraft W. 1992; Decline in CD4+ cell numbers in cats with naturally acquired feline immunodeficiency virus infection. Journal of Virology 66:1484–1488
    [Google Scholar]
  11. Kieny M. P., Lathe R., Rivière Y., Dott K., Schmitt D., Girard M., Montagnier L., Lecocq J. -P. 1988; Improved antigenicity of the HIV env protein by cleavage site removal. Protein Engineering 2:219–255
    [Google Scholar]
  12. Lombardi S., Garzelli C., La Rosa C., Zaccaro L., Specter S., Malvaldi G., Tozzini F., Esposito F., Bendinelli M. 1993; Identification of a linear neutralization site within the third variable region of the feline immunodeficiency virus envelope. Journal of Virology 67:4742–4749
    [Google Scholar]
  13. Mackett M., Smith G. L., Moss B. 1984; General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. Journal of Virology 49:857–864
    [Google Scholar]
  14. Morein B., Sundquist B., Höglund S., Dalsgaard K., Osterhaus A. 1984; Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature; London: 308457–459
    [Google Scholar]
  15. Mowat A. M., Donachie A. M., Reid G., Jarrett O. 1991; Immune-stimulating complexes containing Quil A and protein antigen prime class I MHC-restricted T lymphocytes in vivo and are immunogenic by the oral route. Immunology 72:317–322
    [Google Scholar]
  16. Osterhaus A. D. M. E., Van Wezel A. L., Van Steenis G., Drost G., Hazendonk T. 1981; Monoclonal antibodies to polioviruses. Production of specific monoclonal antibodies to the Sabin vaccine strains. Intervirology 16:218–224
    [Google Scholar]
  17. Osterhaus A., Weijer K., UytdeHaag F., Jarrett O., Sundquist B., Morein B. 1985; Induction of protective immune response in cats by vaccination with feline leukemia virus iscoms. Journal of Immunology 135:591–596
    [Google Scholar]
  18. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. 1987; Isolation of a T lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793
    [Google Scholar]
  19. Rimmelzwaan G. F., Siebelink K. H. J., Broos H., Drost G. A., Weijer K., Van Herwijnen R., Osterhaus A. D. M. E. 1994; Gag- and env-specific serum antibodies in cats after natural and experimental infection with feline immunodeficiency virus. Veterinary Microbiology 39:153–165
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd end. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Siebelink C. H. J., Chu I., Rimmelzwaan G. F., Weijer K., VanHerwijnen R., Knell P., Egberink H. F., Bosch M. L., Osterhaus A. D. M. E. 1990; Feline immunodeficiency virus (FIV) infection in the cat as a model for HIV infection in man: FIV induced impairment of immune function. AIDS Research and Human Retroviruses 6:1373–1378
    [Google Scholar]
  22. Siebelink K. H. J., Chu I., Rimmelzwaan G. F., Weijer K., Osterhaus A. D. M. E., Bosch M. L. 1992; Isolation and partial characterization of infectious molecular clones of feline immunodeficiency virus obtained directly from bone marrow DNA of a naturally infected cat. Journal of Virology 66:1091–1097
    [Google Scholar]
  23. Stephens E. B., Monck E., Reppas K., Butfiloski E. J. 1991; Processing of the glycoprotein of feline immunodeficiency virus: effect of inhibitors of glycosylation. Journal of Virology 65:1114–1123
    [Google Scholar]
  24. Takahashi H., Takeshita T., Morein B., Putney S., Germain R. N., Berzofsky J. A. 1990; Induction of CD8+ cytotoxic T cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature; London: 344873–875
    [Google Scholar]
  25. Talbott R. L., Sparger E. E., Lovelace K. M., Fitch W. M., Pedersen N. C., Luciw P. A., Elder J. H. 1989; Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proceedings of the National Academy of Sciences, U.S.A 86:5743–5747
    [Google Scholar]
  26. Torten M., Franchini M., Barlough J. E., George J. W., Mozes E., Lutz H., Pedersen N. C. 1991; Progressive immune dysfunction in cats experimentally infected with feline immuno-deficiency virus. Journal of Virology 65:2225–2230
    [Google Scholar]
  27. Van Binnendijk R. S., Van Baalen C. A., Poelen M. C. M., De Vries P., Boes J., Cerundolo V., Osterhaus A. D. M. E., UytdeHaag F. G. C. M. 1992; Measles virus transmembrane fusion protein synthesized de novo or presented in iscom is endogenously processed for HLA class I-and class Il-restricted cytotoxic T cell recognition. Journal of Experimental Medicine 176:119–128
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-8-2097
Loading
/content/journal/jgv/10.1099/0022-1317-75-8-2097
Loading

Data & Media loading...

Most cited Most Cited RSS feed