1887

Abstract

H3B cells, a laboratory clone of H9 cells persistently infected with the HTLV-IIIB strain of human immunodeficiency virus (HIV), contained significant levels of cell-associated reverse transcriptase (RT) activity measured by assays using either exogenous or endogenous templates. The cell-associated RT activity detected using exogenous template was almost wholly in a soluble (non-sedimentable) form whereas endogenous activity sedimented as a particulate structure associated with viral RNA. Despite this, H3B cells did not contain episomal HIV DNA detectable by Southern blot, indicating that reverse transcription was not occurring to any significant extent in these cells. However, when susceptible HUT 78 cells were infected by co-cultivation with H3B cells, dramatic synthesis of episomal HIV DNA occurred. Concurrently with this initiation of reverse transcription, however, we found no detectable change in intracellular levels or cleavage profiles of immunoprecipitable RT polypeptides. Finally, actinomycin D pre-treatment of H3B cells to prevent transcription from donor cell proviral DNA after co-cultivation did not affect the initiation of reverse transcription following cell-to-cell HIV infection. These results demonstrated that cells persistently infected with HIV contained significant fully cleaved cell-associated RT in a form that was active but not and that following cell-to-cell transmission of HIV infection to susceptible cells, reverse transcription was initiated without detectable evidence of further synthesis or proteolytic processing of HIV RT. The nature of this initiation process requires further study.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-8-1917
1994-08-01
2022-07-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/8/JV0750081917.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-8-1917&mimeType=html&fmt=ahah

References

  1. Arnold E., Arnold G. F. 1991; Human immunodeficiency virus structure: implications for antiviral design. Advances in Virus Research 39:1–87
    [Google Scholar]
  2. Debouck C., Gorniak J. G., Strickler J. E., Meek T. D., Metcalf B. W., Rosenberg M. 1987; Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proceedings of the National Academy of Sciences, U.S.A 84:8903–8906
    [Google Scholar]
  3. Eisenman R. N., Mason W. S., Linial M. 1980; Synthesis and processing of polymerase proteins of wild-type and mutant avian retroviruses. Journal of Virology 36:62–78
    [Google Scholar]
  4. Ellison V., Adrams H., Roe T., Lifson J., Brown P. 1990; Human immunodeficiency virus integration in a cell-free system. Journal of Virology 64:2711–2715
    [Google Scholar]
  5. Farmerie W. G., Loeb D. D., Casavant N. C., Hutchison C. A.III Edgell M. H., Swanstrom R. 1987; Expression and processing of the AIDS virus reverse transcriptase in Escherichia coli. Science 236:305–308
    [Google Scholar]
  6. Gelderblom H. R. 1991; Assembly and morphology of HIV: potential effect of structure on viral function. AIDS 5:617–638
    [Google Scholar]
  7. Goldberg I. H., Rabinowitz M. 1962; Actinomycin D inhibition of deoxyribonucleic acid-dependent synthesis of ribonucleic acid. Science 136:315–316
    [Google Scholar]
  8. Gough N. 1988; Rapid and quantitative preparation of cytoplasmic RNA from a small number of cells. Analytical Biochemistry 173:93–95
    [Google Scholar]
  9. Gupta P., Balachandran R., Ho M., Enrico A., Rinaldo C. 1989; Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody. Journal of Virology 63:2361–2365
    [Google Scholar]
  10. Hahn B. H., Shaw G. M., Arya S. K., Popovic M., Gallo R. C., Wong-Staal F. 1984; Molecular cloning and characterization of the HTLV-III virus associated with AIDS. Nature; London: 312166–169
    [Google Scholar]
  11. Haseltine W. A., Wong-Staal F. 1988; The molecular biology of the AIDS virus. Scientific American 259:34–42
    [Google Scholar]
  12. Hoffman A. D., Banapour B., Levy J. A. 1985; Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology 147:326–335
    [Google Scholar]
  13. Hu Y. -W., Kang C. Y. 1991; Enzyme activities in four different forms of human immunodeficiency virus 1 pol gene products. Proceedings of the National Academy of Sciences, U.S.A 88:4596–4600
    [Google Scholar]
  14. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. 1988; Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature; London: 331280–283
    [Google Scholar]
  15. Jacobo-Molina A., Arnold E. 1991; HIV reverse transcriptase structure-function relationships. Biochemistry 30:6351–6361
    [Google Scholar]
  16. Johnson M. S., McClure M. A., Feng D. -F., Gray J., Doolittle R. F. 1986; Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proceedings of the National Academy of Sciences, U.S.A 83:7648–7652
    [Google Scholar]
  17. Kaplan A. H., Swanstrom R. 1991; Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proceedings of the National Academy of Sciences, U.S.A 88:4528–4532
    [Google Scholar]
  18. Karageorgos L., Li P., Burrell C. 1993; Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Research and Human Retroviruses 9:817–823
    [Google Scholar]
  19. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. 1992; Crystal structure at 3·5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790
    [Google Scholar]
  20. Kok T., Li P., Burrell C. 1993; Cell-to-cell transmission of human immunodeficiency virus infection induces two distinct phases of viral RNA expression under separate regulatory control. Journal of General Virology 74:33–38
    [Google Scholar]
  21. Levy J. A. 1993; Pathogenesis of human immunodeficiency virus infection. Microbiological Reviews 57:183–289
    [Google Scholar]
  22. Li P., Burrell C. J. 1992; Synthesis of human immunodeficiency virus DNA in a cell-to-cell transmission model. AIDS Research and Human Retroviruses 8:253–259
    [Google Scholar]
  23. Li P., Kuiper L. J., Stephenson A. J., Burrell C. J. 1992; De novo reverse transcription is a crucial event in cell-to-cell transmission of human immunodeficiency virus. Journal of General Virology 73:955–959
    [Google Scholar]
  24. Lightfoote M. M., Coligan J. E., Folks T. M., Fauci A. S., Martin M. A., Venkatesan S. 1986; Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus. Journal of Virology 60:771–775
    [Google Scholar]
  25. Michael N. L., Morrow P., Mosca J., Vahey M., Burk P. S., Redfield R. R. 1991; Induction of human immunodeficiency virus type 1 expression in chronically infected cells is associated primarily with a shift in RNA splicing patterns. Journal of Virology 65:1291–1303
    [Google Scholar]
  26. Myers G., Rabson A. B., Smith T. F., Benzofsky J. A., Wong-Staal F. 1990 Human Retroviruses and AIDS Los Alamos New Mexico: Los Alamos National Laboratory;
    [Google Scholar]
  27. Park J., Morrow C. D. 1991; Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. Journal of Virology 65:5111–5117
    [Google Scholar]
  28. Peng C., Ho B. K., Chang T. W., Chang N. T. 1989; Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. Journal of Virology 63:2550–2556
    [Google Scholar]
  29. Phylip L. H., Mills J. S., Parten B. F., Dunn B. M., Kay J. 1992; Intrinsic activity of precursor forms of HIV-1 proteinase. FEBS Letters 314:449–4w54
    [Google Scholar]
  30. Pomerantz R. J., Frono D., Feinberg M. B., Baltimore D. 1990; Cells non-productively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a model for HIV latency. Cell 61:1271–1276
    [Google Scholar]
  31. Reich E., Franklin R. M., Shatkin A. J., Tatum E. L. 1961; Effect of Actinomycin D on cellular nucleic acid synthesis and virus production. Science 134:556–557
    [Google Scholar]
  32. Rice W. G., Schaeffer C. A., Graham L., Bu M., McDougal J. S., Orloff S. L., Villinger F., Young M., Oroszlan S., Fesen M. R., Pommier Y., Mendeleyev J., Kun E. 1993; The site of antiviral action of 3-nitrosobenzamide on the infectivity process of human immunodeficiency virus in human lymphocytes. Proceedings of the National Academy of Sciences, U.S.A 90:9721–9724
    [Google Scholar]
  33. Starnes M. C., Gao W., Ting R. Y. C., Cheng Y. -C. 1988; Enzyme activity gel analysis of human immunodeficiency virus reverse transcriptase. Journal of Biological Chemistry 263:5132–5134
    [Google Scholar]
  34. Tisdale M., Ertl P., Larder B. A., Purifoy D. J. M., Darby G., Powell K. L. 1988; Characterization of human immunodeficiency virus type 1 reverse transcriptase by using monoclonal antibodies: role of the C terminus in antibody reactivity and enzyme function. Journal of Virology 62:3662–3667
    [Google Scholar]
  35. Veronese F. D., Copeland T. D., DeVico A. L., Rahman R., Oroszlan S., Gallo R. C., Sarngadharan M. G. 1986; Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV. Science 231:1289–1291
    [Google Scholar]
  36. White D. O., Fenner F. J. 1986 Medical Virology 3rd edn pp. 82–87 Orlando: Academic Press;
    [Google Scholar]
  37. Wilson W., Braddock M., Adams S. E., Rathjen P. D., Kingsman S. M., Kingsman A. J. 1988; HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell 55:1159–1169
    [Google Scholar]
  38. Witte O. N., Baltimore D. 1978; Relationship of retrovirus polyprotein cleavages to virion maturation studied with temperature-sensitive murine leukemia virus mutants. Journal of Virology 26:750–761
    [Google Scholar]
  39. Yong W. H., Wyman S., Levy J. A. 1990; Optimal conditions for synthesizing complementary DNA in the HIV-1 endogenous reverse transcriptase reaction. AIDS 4:199–206
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-8-1917
Loading
/content/journal/jgv/10.1099/0022-1317-75-8-1917
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error