Genome organization of the DNA-binding protein gene region of granulosis virus is closely related to that of nuclear polyhedrosis viruses Free

Abstract

The nucleotide sequence and genomic organization of a conserved genome region within the RI G fragment of granulosis virus (C1GV) is presented. Five open reading frames (ORFs) were identified which were homologous to those of nuclear polyhedrosis virus (AcMNPV), located upstream of the helicase gene (pl43) at 63·6 to 65·6 map units. The ORFs of C1GV and AcMNPV share nucleotide sequence homologies of about 47 to 53 % and are very similarly arranged. One of the C1GV ORFs potentially encodes a basic DNA- binding protein with an of about 7·3K. Its predicted amino acid sequence mainly consists of multiple arginine and serine residues and shows a 52 to 55 % identity to the DNA-binding proteins of AcMNPV and other nuclear polyhedrosis viruses. Its amino acid composition conforms to that of the DNA-binding proteins of granulosis virus and granulosis virus.

The nucleotide sequence reported here will appear in the EMBL, GenBank and DDBJ nucleotide sequence databases under the accession number X77048.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-7-1815
1994-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/7/JV0750071815.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-7-1815&mimeType=html&fmt=ahah

References

  1. Bjornson R. M., Rohrmann G. F. 1992; Nucleotide sequence of the polyhedron envelope protein gene region of the Lymantria dispar nuclear polyhedrosis virus. Journal of General Virology 73:1499–1504
    [Google Scholar]
  2. Crook N. E. 1991; Baculoviridae: subgroup B. Comparative aspects of granulosis viruses. In Viruses of Invertebrates pp. 73–110 Kurstak E. Edited by New York: Marcel Dekker;
    [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  4. Dwyer K. G., Granados R. R. 1987; A physical map of the Pieris rapae granulosis virus genome. Journal of General Virology 68:1471–1476
    [Google Scholar]
  5. Dwyer K. G., Granados R. R. 1988; Mapping Pieris rapae granulosis virus transcripts and their in vitro translation products. Journal of Virology 62:1535–1542
    [Google Scholar]
  6. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. 1991; Classification and nomenclature of viruses. Fifth report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplementum 2
    [Google Scholar]
  7. Funk C. J., Consigli R. A. 1992; Evidence for zinc binding by two structural proteins of Plodia interpunctella granulosis virus. Journal of Virology 66:3168–3171
    [Google Scholar]
  8. Funk C. J., Consigli R. A. 1993; Phosphate cycling on the basic protein of Plodia interpunctella granulosis virus. Virology 193:396–402
    [Google Scholar]
  9. Gombart A. F., Pearson M. N., Rohrmann G. F., Beaudreau G. S. 1989; A baculovirus polyhedral envelope-associated protein: genetic location, nucleotide sequence and immunocytochemical characterization. Virology 169:182–193
    [Google Scholar]
  10. Gross C. H., Wolgamot G. M., Russell R. L. Q., Pearson M. N., Rohrmann G. F. 1993; A 37-kilodalton glycoprotein from a baculovirus Orgyia pseudotsugata is localized to cytoplasmic inclusion bodies. Journal of Virology 67:469–475
    [Google Scholar]
  11. Henikoff S. 1987; Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods in Enzymology 155:156–165
    [Google Scholar]
  12. Hill-Perkins M. S., Possee R. D. 1990; A baculovirus expression vector derived from the basic protein promoter of Autographa californica nuclear polyhedrosis virus. Journal of General Virology 71:971–976
    [Google Scholar]
  13. Huber J. 1986; Use of baculoviruses in pest management programmes. In The Biology of Baculoviruses 2 Practical Application for Insect Control pp. 181–202 Granados R. R., Federici B. A. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  14. Jehle J. A., Backhaus H., Fritsch E., Huber J. 1992; Physical map of the Cryptophlebia leucotreta granulosis virus genome and its relationship to the genome of Cydia pomonella granulosis virus. Journal of General Virology 73:1621–1626
    [Google Scholar]
  15. Kelly D. C., Brown D. A., Ayres M. D., Allen C. J., Walker I. O. 1983; Properties of the major nucleocapsid protein of Heliothis zea singly enveloped nuclear polyhedrosis virus. Journal of General Virology 64:399–408
    [Google Scholar]
  16. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  17. Lu A., Carstens E. B. 1991; Nucleotide sequence of a gene essential for viral DNA replication in the baculovirus Autographa californica nuclear polyhedrosis virus. Virology 181:336–347
    [Google Scholar]
  18. Lu A., Carstens E. B. 1992; Transcription analysis of the EcoRI D region of the baculovirus Autographa californica nuclear polyhedrosis virus identifies an early 4-kilobase RNA encoding the essential pl43 gene. Journal of Virology 66:655–663
    [Google Scholar]
  19. Maeda S., Kamita S. G., Kataoka H. 1991; The basic DNA-binding protein of Bombyx mori nuclear polyhedrosis virus: the existence of an additional arginine repeat. Virology 180:807–810
    [Google Scholar]
  20. Nissen M. S., Friesen P. D. 1989; Molecular analysis of the transcriptional regulatory region of an early baculovirus gene. Journal of Virology 63:493–503
    [Google Scholar]
  21. Oellig C., Happ B., Müller T., Doerfler W. 1987; Overlapping sets of viral RNAs reflect the array of polypeptides in the EcoRI J and N fragments (map positions 81-2 to 85-9) of the Autographa californica nuclear polyhedrosis virus. Journal of Virology 61:3048–3057
    [Google Scholar]
  22. Passarelli A. L., Miller L. K. 1993; Identification of genes encoding late expression factors located between 56·0 and 65·4 map units of the Autographa californica nuclear polyhedrosis virus genome. Virology 197:704–714
    [Google Scholar]
  23. Rohrmann G. F. 1986; Polyhedrin structure. Journal of General Virology 67:1499–1513
    [Google Scholar]
  24. Rohrmann G. F. 1992; Baculovirus structural proteins. Journal of General Virology 73:749–761
    [Google Scholar]
  25. Russell R. L. Q., Rohrmann G. F. 1990; The p6·5 gene region of a nuclear polyhedrosis virus of Orgyia pseudotsugata: DNA sequence and transcriptional analysis of four late genes. Journal of General Virology 71:551–560
    [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  27. Tomalski M. D., Eldridge R., Miller L. K. 1991; A baculovirus homolog of a Cu/Zn superoxide dismutase gene. Virology 184:149–161
    [Google Scholar]
  28. Tweeten K. A., Bulla L. A. Jr Consigli R. A. 1980; Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. Journal of Virology 33:866–876
    [Google Scholar]
  29. Wilson M. E., Mainprize T. H., Friesen P. D., Miller L. K. 1987; Location, transcription, and sequence of a baculovirus gene encoding a small arginine-rich polypeptide. Journal of Virology 61:661–666
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-7-1815
Loading
/content/journal/jgv/10.1099/0022-1317-75-7-1815
Loading

Data & Media loading...

Most cited Most Cited RSS feed