Nucleotide sequence and expression of the spike (S) gene of canine coronavirus and comparison with the S proteins of feline and porcine coronaviruses Free

Abstract

We have cloned, sequenced and expressed the spike (S) gene of canine coronavirus (CCV; strain K378). Its deduced amino acid sequence has revealed features in common with other coronavirus S proteins: a stretch of hydrophobic amino acids at the amino terminus (the putative signal sequence), another hydrophobic region at the carboxy terminus (the membrane anchor), heptad repeats preceding the anchor, and a cysteine-rich region located just downstream from it. Like other representatives of the same antigenic cluster (CCV-Insavc-1 strain, feline infectious peritonitis and enteric corona- viruses, porcine transmissible gastroenteritis and respiratory coronaviruses, and the human coronavirus HCV 229E), the CCV S polypeptide lacks a proteolytic cleavage site present in many other coronavirus S proteins. Pairwise comparisons of the S amino acid sequences within the antigenic cluster demonstrated that the two CCV strains (K378 and Insavc-1) are 93·3% identical, about as similar to each other as they are to the two feline coronaviruses. The porcine sequences are clearly more divergent mainly due to the large differences in the amino-terminal (residues 1 to 300) domains of the proteins; when only the carboxy-terminal parts (residues 301 and on) are considered the homologies between the canine, feline and porcine S polypeptides are generally quite high, with identities ranging from 90·8 % to 96·8 %. The human coronavirus is less related to the other members of the antigenic group. A phylogenetic tree constructed on the basis of the S sequences showed that the two CCVs are evolutionarily more related to the feline than to the porcine viruses. Expression of the CCV S gene using the vaccinia virus T7 RNA polymerase system yielded a protein of the expected (approximately 200K) which could be immunoprecipitated with an anti-feline infectious peritonitis virus polyclonal serum and which was indistinguishable from the S protein synthesized in CCV-infected cells.

The nucleotide sequence data presented in this paper have been submitted to the EMBL database and assigned the accession number X77047.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-7-1789
1994-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/7/JV0750071789.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-7-1789&mimeType=html&fmt=ahah

References

  1. Barlough J. E., Stoddart C. A., Sorresso G. P., Jacobson R. H., Scott F. W. 1984; Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus. Laboratory Animal Science 34:592–597
    [Google Scholar]
  2. Binn L. N., Lazar E. C., Keenan K. P., Huxsoll D. L., Marchwicki R. H., Strano A. J. 1974; Recovery and characterization of a coronavirus from military dogs with diarrhea. Proceedings of the Annual Meeting of the U.S. Animal Health Association 78:359–366
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Carmichael L. E., Binn L. N. 1981; New enteric viruses in the dog. Advances in Veterinary Science and Comparative Medicine 25:1–37
    [Google Scholar]
  5. de Groot R. J., Maduro J., Lenstra J. A., Horzinek M. C., van der Zeijst B. A. M., Spaan W. J. M. 1987a; cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. Journal of General Virology 68:2639–2646
    [Google Scholar]
  6. de Groot R. J., Luytjes W., Horzinek M. C., van der Zeijst B. A. M., Spaan W. J. M., Lenstra J. W. 1987b; Evidence for a coiled-coil structure in the spike proteins of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  8. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, U.S.A 83:8122–8126
    [Google Scholar]
  9. Gombold J. L., Hingley S. T., Weiss S. R. 1993; Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. Journal of Virology 67:4504–4512
    [Google Scholar]
  10. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  11. Horsburgh B. C., Brierley I., Brown T. D. K. 1992; Analysis of a 9·6 kb sequence from the 3′ end of canine coronavirus genomic RNA. Journal of General Virology 73:2849–2862
    [Google Scholar]
  12. Horzinek M. C., Lutz H., Pedersen N. C. 1982; Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infection and Immunity 37:1148–1155
    [Google Scholar]
  13. Hunter E., Hill E., Hardwick M., Brown A., Schwartz D. E., Tizard R. 1983; Complete sequence of the Rous sarcoma virus env gene: identification of structural and functional regions of its product. Journal of Virology 46:920–936
    [Google Scholar]
  14. Jacobs L., de Groot R., van der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV). Virus Research 8:363–371
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  16. Luytjes W., Sturman L. S., Bredenbeek P. J., Charité J., van der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  17. Raabe T., Schelle-Prinz B., Siddell S. G. 1990; Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. Journal of General Virology 71:1065–1073
    [Google Scholar]
  18. Rasschaert D., Duarte M., Laude H. 1990; Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. Journal of General Virology 71:2599–2607
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sanchez C. M., Jimenez G., Laviada M. D., Correa I., Sune C., Bullido M. J., Gebauer F., Smerdou C., Callebaut P., Escribano J. M., Enjuanes L. 1990; Antigenic homology among coronaviruses related to the transmissible gastroenteritis virus. Virology 174:410–417
    [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  23. Siddell S., Wege H., ter Meulen V. 1983; The biology of coronaviruses. Journal of General Virology 64:761–776
    [Google Scholar]
  24. Spaan W. J. M., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  25. Spaan W. J. M., Cavanagh D., Horzinek M. C. 1990; Coronaviruses. In Immunochemistry of Viruses II pp. 359–379 van Regenmortel M. H. V., Neurath A. R. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  26. Stauber R., Pfleiderer M., Siddell S. 1993; Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for fusion activity. Journal of General Virology 74:183–191
    [Google Scholar]
  27. Taguchi F. 1993; Fusion formation BY the uncleaved spike protein of murine coronavirus JHMV variant cl-2. Journal of Virology 67:1195–1202
    [Google Scholar]
  28. Vennema H., Heijnen L., Zijderveld A., Horzinek M. C., Spaan W. J. M. 1990a; Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. Journal of Virology 64:339–346
    [Google Scholar]
  29. Vennema H., de Groot R. J., Harbour D. A., Dalderup M., Grufydd-Jones T., Horzinek M. C., Spaan W. J. M. 1990b; Early death after feline infectious peritonitis virus challenge due to a recombinant vaccinia virus immunization. Journal of Virology 64:1407–1409
    [Google Scholar]
  30. Vennema H., Runbrand R., Heijnen L., Horzinek M. C., Spaan W. J. M. 1991; Enhancement of the vaccinia virus/phage T7 RNA polymerase expression system with encephalomyocarditis virus 5′ untranslated region sequences. Gene 108:201–210
    [Google Scholar]
  31. Vennema H., Rossen J. W. A., Wesseling J. G., Horzinek M. C., Rottier P. J. M. 1992; Genomic organization and expression of the 3′ end of the canine and feline enteric coronaviruses. Virology 191:134–140
    [Google Scholar]
  32. von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-7-1789
Loading
/content/journal/jgv/10.1099/0022-1317-75-7-1789
Loading

Data & Media loading...

Most cited Most Cited RSS feed