1887

Abstract

The sequence coding for the 5′ untranslated region (UTR) of ICP22 mRNA of herpes simplex virus type 1 has been tested for its ability to regulate gene expression. This sequence was placed in frame with the chloramphenicol acetyltransferase (CAT) coding sequence and under the control of the simian virus 40 early promoter-enhancer. Under these conditions, the sequence coding for the 5 UTR led to an increase of about 13-fold in CAT activity, measured during transient expression. The use of mutants with progressive deletions within the sequence coding for the 5′UTR allowed localization of the sequence responsible for the enhancement of gene expression to the first exon of the ICP22 gene. Precise quantification of hybrid ICP22-CAT mRNA showed that the sequence coding for the 5′UTR induced an increase in the amounts of transcripts, which resulted in a parallel increase in CAT activity. This increase in the level of hybrid ICP22-CAT mRNA is not the result of an increase in mRNA stability, nor is it due to more efficient nucleo-cytoplasmic transport of the transcripts. Moreover, the distribution of hybrid mRNA in the different ribosomal populations indicates that the 5′UTR of ICP22 mRNA does not induce a preferential recruitment of the transcripts by the translational apparatus. Taken together, these results indicate that a cis-acting element located in the sequence coding for the 5′UTR of ICP22 mRNA can mediate a high level of gene expression independently of the viral promoter and of viral trans-acting factors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-7-1693
1994-07-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/7/JV0750071693.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-7-1693&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols In Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  2. Batterson W., Roizman B. 1983; Characterization of the herpes simplex virion-associated factor responsible for the induction of a genes. Journal of Virology 46:371–377
    [Google Scholar]
  3. Blair E. D., Blair C. C., Wagner E. K. 1987; Herpes simplex virus virion stimulatory protein mRNA leader contains sequence elements which increase both virus-induced transcription and mRNA stability. Journal of Virology 61:2499–2508
    [Google Scholar]
  4. Coen D. M., Weinheimer S. P., Mcknight S. L. 1986; A genetic approach to promoter recognition during trans induction of viral gene expression. Science 234:53–59
    [Google Scholar]
  5. Cullen B. R. 1990; The HIV-1 Tat protein: an RNA sequence-specific processivity factor?. Cell 63:655–657
    [Google Scholar]
  6. Degnin C. R., Schleiss M. R., Cao J. H., Geballe A. P. 1993; Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript. Journal of Virology 67:5514–5521
    [Google Scholar]
  7. Desbois C., Massé T., Madjar J. J. 1992; Optimization of the CAT assay procedure by determining the initial rate of enzymatic reaction. Trends in Genetics 8:300–301
    [Google Scholar]
  8. Diaz J.-J., Simonin D., Massé T., Deviller P., Kindbeiter K., Denoroy L., Madjar J.-J. 1993; The herpes simplex virus type 1 US 11 gene product is a phosphorylated protein found to be nonspecifically associated with both ribosomal subunits. Journal of General Virology 74:397–406
    [Google Scholar]
  9. Elshiekh N. A., Harris-Hamilton E., Bachenheimer S. L. 1991; Differential dependence of herpes simplex virus immediate-early gene expression on de novo-infected cell protein synthesis. Journal of Virology 65:6430–6437
    [Google Scholar]
  10. Fenwick M. L., Walker M. J. 1978; Suppression of the synthesis of cellular macromolecules by herpes simplex virus. Journal of General Virology 41:37–51
    [Google Scholar]
  11. Garcin D., Massé T., Madjar J.-J., Jacquemont B. 1990; Herpes simplex virus type-1 immediate-early gene expression and shut off of host protein synthesis are inhibited in neomycin-treated human epidermoid carcinoma 2 cells. European Journal of Biochemistry 194:279–286
    [Google Scholar]
  12. Garfinkel M. S., Katze M. G. 1992; Translational control by influenza virus. Selective and cap-dependent translation of viral mRNAs in infected cells. Journal of Biological Chemistry 267:9383–9390
    [Google Scholar]
  13. Geballe A. P., Gray M. K. 1992; Variable inhibition of cell-free translation by HIV-1 transcript leader sequences. Nucleic Acids Research 20:4291–4297
    [Google Scholar]
  14. Gilliland G., Perrin S., Bunn H. F. 1990; Competitive PCR for quantitation of mRNA. In PCR Protocols: A Guide To Methods And Applications pp. 60–69 Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. Edited by San Diego: Academic Press;
    [Google Scholar]
  15. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  16. Greco A., Massé T., Madjar J.-J. 1993; Precise quantitation of chloramphenicol acetyl transferase reporter mRNA by competitive polymerase chain reaction. Electrophoresis 14:1292–1294
    [Google Scholar]
  17. Guzowski J. F., Wagner E. K. 1993; Mutational analysis of the herpes-simplex virus type-1 strict late UL38 promoter/leader reveals two regions critical in transcriptional regulation. Journal of Virology 67:5098–5108
    [Google Scholar]
  18. Harris-Hamilton E., Bachenheimer S. L. 1985; Accumulation of herpes simplex virus type 1 RNAs of different kinetic classes in the cytoplasm of infected cells. Journal of Virology 53:144–151
    [Google Scholar]
  19. Honess R. W., Roizman B. 1974; Regulation of herpes virus macromolecular synthesis.Cascade regulation of the synthesis of the three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  20. Huang C. J., Goodart S. A., Rice M. K., Guzowski J. F., Wagner E. K. 1993; Mutational analysis of sequences downstream of the TATA box of the herpes-simplex virus type-1 major capsid protein (VP5/UL19) promoter. Journal of Virology 67:5109–5116
    [Google Scholar]
  21. Huang J., Schneider R. J. 1991; Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein. Cell 65:271–280
    [Google Scholar]
  22. Jones P. C., Roizman B. 1979; Regulation of herpesvirus macromolecular synthesis. VIII. The transcription programme consists of three phases of which both extent of transcription and accumulation of RNA in the cytoplasm are regulated. Journal of Virology 31:299–314
    [Google Scholar]
  23. Krikorian C. R., Read G. S. 1991; In vitro mRNA degradation system to study the virion host shutoff function of herpes simplex virus. Journal of Virology 65:112–122
    [Google Scholar]
  24. Kwong A. D., Frenkel N. 1989; The herpes simplex virus virion host shutoff function. Journal of Virology 63:4834–4839
    [Google Scholar]
  25. Leong K., Lee W., Berk A. 1990; High-level transcription from the adenovirus major late promoter requires downstream binding sites for late-phase-specific factors. Journal of Virology 64:51–60
    [Google Scholar]
  26. Lindquist S., Petersen R. 1990; Selective translation and degradation of heat-shock messenger RNAs in drosophila. Enzyme 44:147–166
    [Google Scholar]
  27. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex type 1 virus. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  28. Mcgeoch D. J., Doland A., Donald S., Brauer D. H. K. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex type 1 virus. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  29. Mcgeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., Mcnab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  30. Massé T., Garcin D., Jacquemont B., Madjar J.-J. 1990a; Herpes simplex virus type-1-induced stimulation of ribosomal protein S6 phosphorylation is inhibited in neomycin-treated human epidermoid carcinoma 2 cells and in ras-transformed cells. European Journal of Biochemistry 194:287–291
    [Google Scholar]
  31. Massé T., Garcin D., Jacquemont B., Madjar J. J. 1990b; Ribosome and protein synthesis modifications after infection of human epidermoid carcinoma cells with herpes simplex virus type I. Molecular and General Genetics 220:377–388
    [Google Scholar]
  32. Meerovitch K., Nicholson R., Sonenberg N. 1991; In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5′ untranslated region. Journal of Virology 65:5895–5901
    [Google Scholar]
  33. Mullis K. B., Faloona F. A. 1987; Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155:335–350
    [Google Scholar]
  34. O’Hare P., Hayward G. S. 1985; Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feedback regulation. Journal of Virology 56:723–733
    [Google Scholar]
  35. Oroskar A. A., Read G. S. 1989; Control of mRNA stability by the virion host shutoff function of herpes simplex virus. Journal of Virology 63:1897–1906
    [Google Scholar]
  36. Pederson N. E., Person S., Homa F. L. 1992; Analysis of the gB promoter of herpes simplex virus type 1: high-level expression requires both an 89-base-pair promoter fragment and a non-translated leader sequence. Journal of Virology 66:6226–6232
    [Google Scholar]
  37. Perry L. J., Mcgeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  38. Rhoads D. D., Dixit A., Roufa D. J. 1986; Primary structure of human ribosomal protein S14 and the gene that encodes it. Molecular and Cellular Biology 6:2774–2783
    [Google Scholar]
  39. Rixon F. J., Clements J. B. 1982; Detailed structural analysis of two spliced HSV-1 immediate-early mRNAs. Nucleic Acids Research 10:2241–2256
    [Google Scholar]
  40. Roizman B., Sears A. E. 1993; Herpes simplex viruses and their replication. In The Human Herpesviruses pp. 11–68 Roizman B., Whitley R. J., Lopez C. Edited by New York: Raven Press;
    [Google Scholar]
  41. Romanelli M. G., Mavromara-Nazos P., Spector D., Roizman B. 1992; Mutational analysis of the ICP4 binding sites in the 5′ transcribed noncoding domains of the herpes simplex virus 1 UL 49·5 γ2 gene. Journal of Virology 66:4855–4863
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Smibert C. A., Smiley J. R. 1990; Differential regulation of endogenous and transduced β-globin genes during infection of erythroid cells with a herpes simplex virus type 1 recombinant. Journal of Virology 64:3882–3894
    [Google Scholar]
  44. Tedder D. G., Everett R. D., Wilcox K. W., Beard P., Pizer L. I. 1989; ICP4-binding sites in the promoter and coding regions of the herpes simplex virus gD gene contribute to activation of in vitro transcription by ICP4. Journal of Virology 63:2510–2520
    [Google Scholar]
  45. Weinheimer S. P., Mcknight S. L. 1987; Transcriptional and post-transcriptional controls establish the cascade of herpes simplex virus protein synthesis. Journal of Molecular Biology 195:819–833
    [Google Scholar]
  46. Weir J. P., Narayanan P. R. 1990; Expression of the herpes simplex virus type 1 glycoprotein C gene requires sequences in the 5′ noncoding region of the gene. Journal of Virology 64:445–449
    [Google Scholar]
  47. Yager D. R., Marcy A. I., Coen D. M. 1990; Translational regulation of herpes simplex virus DNA polymerase. Journal of Virology 64:2217–2225
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-7-1693
Loading
/content/journal/jgv/10.1099/0022-1317-75-7-1693
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error