1887

Abstract

The nucleotide sequence data in this paper will appear in the EMBL database under the accession no. X71982.

The nucleotide sequence of a 55098 bp region from the right end of the genome of a virulent African swine fever virus (ASFV) isolate (Malawi LIL20/1) has been determined. Translation of the sequence identi fied 67 major open reading frames (ORFs) which are closely spaced and read from both DNA strands. At six positions intergenic tandem repeat arrays are found. Comparison of the predicted amino acid sequences of encoded proteins with protein sequence databases identified a number of homologies. These include three subunits of RNA polymerase, a protein with homology to transcription factor SII (TFSII), a DNA ligase, two subunits of mRNA capping enzyme, a DNA topo- isomerase type II, a dUTPase, a protein kinase, three helicases, a ubiquitin-conjugating enzyme, a protein with homology to the S and S-like proteins identified in some bacteria and a protein with homology to both a myeloid differentiation primary response antigen (MyD116) and to a herpes simplex virus-encoded neurovirulence-associated protein (ICP34.5), a protein with homology to the ASFV-encoded structural protein p22, two proteins with homology to copies of the ASFV-encoded multigene family 360 and one protein with homology to the ASFV- encoded multigene family 110. Four genes encode proteins which have homology to each other and constitute a new multigene family (MGF100). Nine ORFs encode proteins which contain predicted transmembrane domains. The possible functions of these predicted ASFV-encoded proteins are discussed and the evolutionary relationship of ASFV to other viruses are considered. Despite the similarities in genome structure and replication strategy of ASFV with poxviruses, sequence similarity between them is low and the organization of ASFV-encoded genes is not colinear with that of the orthopoxviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-7-1655
1994-07-01
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/7/JV0750071655.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-7-1655&mimeType=html&fmt=ahah

References

  1. Agüero M., Blasco R., Wilkinson P., Viñuela E. 1990; Analysis of naturally occurring deletion variants of African swine fever virus: multigene family 110 is not essential for infectivity or virulence in pigs. Virology 176:195–204
    [Google Scholar]
  2. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167
    [Google Scholar]
  3. Alcamí A., Angulo A., López-Otín C., Muñoz M., Freije J. M. P., Carrascosa A. L., Viñuela E. 1992; Amino acid sequence and structural properties of protein p12, an African swine fever virus attachment protein. Journal of Virology 66:3860–3868
    [Google Scholar]
  4. Alcaraz C., Alvarez A., Escribano J. M. 1992; Flow cytometric analysis of African swine fever virus-induced plasma membrane proteins and their humoral immune response in pigs. Virology 189:266–273
    [Google Scholar]
  5. Almazán F., Rodríguez J. M., Andrés G., Pérez R., Viñuela E., Rodríguez J. F. 1992; Transcriptional analysis of multigene family 110 of African swine fever virus. Journal of Virology 66:6655–6667
    [Google Scholar]
  6. Almazán F., Rodríguez J. M., Angulo A., Viñuela E., Rodríguez J. F. 1993; Transcriptional mapping of a late gene coding for the p12 attachment protein of African swine fever virus. Journal of Virology 67:553–556
    [Google Scholar]
  7. Almendral J. M., Almazán F., Blasco R., Viñuela E. 1990; Multigene families in African swine fever virus DNA. Family 110. Journal of Virology 64:2064–2072
    [Google Scholar]
  8. Banham A. H., Smith G. L. 1992; Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. Virology 191:803–812
    [Google Scholar]
  9. Banker A. T., Weston K. M., Barrell B. G. 1987; Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods in Enzymology 155:51–93
    [Google Scholar]
  10. Baylis S. A., Dixon L. K., Vydelingum S., Smith G. L. 1992; African swine fever virus encodes a gene with extensive homology to type II topoisomerases. Journal of Molecular Biology 228:1003–1010
    [Google Scholar]
  11. Baylis S. A., Banham A. H., Vydelingum S., Dixon L. K., Smith G. L. 1993a; African swine fever virus encodes a serine protein kinase which is packaged into virions. Journal of Virology 67:4549–4556
    [Google Scholar]
  12. Baylis S. A., Twigg S. R. F., Vydelingum S., Dixon L. K., Smith G. L. 1993b; Three African swine fever virus genes encoding proteins with homology to putative helicases of vaccinia virus. Journal of General Virology 74:1969–1974
    [Google Scholar]
  13. Beattie E., Tartaglia J., Paoletti E. 1991; Vaccinia virus-encoded e1F-2α homolog abrogates the antiviral effect of interferon. Virology 183:419–422
    [Google Scholar]
  14. Beynon J., Ally A., Cannon M., Cannon F., Jacobson M., Cash V., Dean D. 1987; Comparative organization of nitrogen fixation-specific genes from Azotobacter vinelandii and Klebsiella pneumoniae DNA sequence of the Nif USV genes. Journal of Bacteriology 169:4024–4029
    [Google Scholar]
  15. Binns M. M., Boursnell M. E. G., Skinner M. A. 1992; Gene translocations in poxviruses: the fowlpox virus thymidine kinase gene is flanked by 15 bp direct repeats and occupies the locus which in vaccinia virus is occupied by the ribonucleotide reductase large subunit gene. Virus Research 24:161–172
    [Google Scholar]
  16. Blasco R., Agüero M., Almendral J. M., Viñuela E. 1989a; Variable and constant regions in African swine fever virus DNA. Virology 168:330–338
    [Google Scholar]
  17. Blasco R., de la Vega I., Almazán F., Agüero M., Viñuela E. 1989b; Genetic variation of African swine fever virus; variable regions near the ends of the viral DNA. Virology 173:251–257
    [Google Scholar]
  18. Blasco R., López-Otín C., Muñóz M., Bockamp E. O., Simón-Mateo C., Viñuela E. 1990; Sequence and evolutionary relationships of African swine fever virus thymidine kinase. Virology 178:301–304
    [Google Scholar]
  19. Boone R. F., Parr R. P., Moss B. 1979; Intermolecular duplexes formed from polyadenylated vaccinia virus RNA. Journal of Virology 30:365–374
    [Google Scholar]
  20. Boursnell M., Shaw K., Yáñez R. J., Viñuela E., Dixon L. K. 1991; The sequences of the ribonucleotide reductase genes from African swine fever virus show considerable homology with those of the orthopoxvirus, vaccinia virus. Virology 184:411–416
    [Google Scholar]
  21. Brown F. 1986; The classification and nomenclature of viruses. Summary of results of meetings of the International Committee on Taxonomy of Viruses in Sendai, September 1984. Intervirology 25:141–143
    [Google Scholar]
  22. Broyles S. S., Fesler B. S. 1990; Vaccinia virus gene encoding a component of the viral early transcription factor. Journal of Virology 64:1523–1529
    [Google Scholar]
  23. Broyles S. S., Moss B. 1987; Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. Journal of Virology 61:1738–1742
    [Google Scholar]
  24. Camacho A., Viñuela E. 1991; Protein p22 of African swine fever virus: an early structural protein that is incorporated into the membrane of infected cells. Virology 181:251–257
    [Google Scholar]
  25. Chang H. W., Watson J. C., Jacobs B. L. 1992; The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, doublestranded RNA-dependent protein kinase. Proceedings of the National Academy of Sciences, U.S.A 89:4825–4829
    [Google Scholar]
  26. Chou J., Roizman B. 1990; The herpes simplex virus 1 gene for ICP34.5, which maps in inverted repeats, is conserved in several limited-passage isolates but not in strain 17syn+ . Journal of Virology 64:1014–1020
    [Google Scholar]
  27. Chua T. P., Smith C. E., Reith R. W., Williamson J. D. 1990; Inflammatory responses and the generation of chemoattractant activity in cowpox virus-infected tissues. Immunology 69:202–208
    [Google Scholar]
  28. Colby C., Duesberg P. H. 1969; Double-stranded RNA in vaccinia virus infected cells. Nature; London: 222940–944
    [Google Scholar]
  29. Collins J. F., Coulson A. F. W. 1987; Molecular sequence comparison and alignment. In Nucleic Acid and Protein Sequence Analysis: A Practical Approach pp. 323–358 Bishop M., Rawlings C. Edited by Oxford: IRL Press;
    [Google Scholar]
  30. Costa J. V. 1990; African swine fever virus. In Molecular Biology of Iridoviruses pp. 247–270 Darai G. Edited by Boston: Kluwer Academic Publishers;
    [Google Scholar]
  31. Davies M. V., Elroy-Stein O., Jagus R., Moss B., Kaufman R. J. 1992; The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. Journal of Virology 66:1943–1950
    [Google Scholar]
  32. den Boon J. A., Snuder E. J., Chirnside E. D., de Vries A. A. F., Horzinek M. C., Spaan W. J. M. 1991; Equine arteritis virus is not a togavirus but belongs to the coronavirus like superfamily. Journal of Virology 65:2910–2920
    [Google Scholar]
  33. Dequard-Chablat M., Riva M., Carles C., Sentenac A. 1991; RPC19, the gene for a subunit common to yeast RNA polymerases A(1) and C(111). Journal of Biological Chemistry 266:15300–15307
    [Google Scholar]
  34. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  35. Dixon L. K. 1988; Molecular cloning and restriction enzyme mapping of an African swine fever virus isolate from Malawi. Journal of General Virology 69:1683–1694
    [Google Scholar]
  36. Dixon L. K., Bristow C., Wilkinson P. J., Sumption K. J. 1990a; Identification of a variable region of the African swine fever virus genome which has undergone separate DNA rearrangements leading to expansion of minisatellite-like sequences. Journal of Molecular Biology 216:677–688
    [Google Scholar]
  37. Dixon L. K., Wilkinson P. J., Sumption K. J., Ekue F. 1990b; Diversity of the African swine fever virus genome. In Molecular Biology of Iridoviruses pp. 271–295 Darai G. Edited by Boston: Kluwer Academic Publishers;
    [Google Scholar]
  38. Dixon L. K., Baylis S. A., Vydelingum S., Twigg S. R. F., Hammond J. M., Hingamp P. M., Bristow C., Wilkinson P. J., Smith G. L. 1993; African swine fever virus genome content and variability. Archives of Virology supplement 7 185–199
    [Google Scholar]
  39. Elder J. H., Lerner D. L., Hasselkus-Light C. S., Fontenot D. J., Hunter E., Luciw P. A., Montelaro R. C., Phillips T. R. 1992; Distinct subsets of retroviruses encode dUTPase. Journal of Virology 66:1791–1794
    [Google Scholar]
  40. Esteves A., Marques M. I., Costa J. V. 1986; Two-dimensional analysis of African swine fever virus proteins and proteins induced in infected cells. Virology 152:192–206
    [Google Scholar]
  41. García-Beato R., Freue J. M. P., López-Otín C., Blasco R., Viñuela E., Salas M. L. 1992; A gene homologous to topoisomerase II in African swine fever virus. Virology 188:938–947
    [Google Scholar]
  42. Gershon P. D., Moss B. 1990; Early transcription factor subunits are encoded by vaccinia virus late genes. Proceedings of the National Academy of Sciences, U.S.A 87:4401–4405
    [Google Scholar]
  43. Goebel S. J., Johnson G. P., Perkus M. E., David S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266
    [Google Scholar]
  44. González A., Talavera A., Almendral J. M., Viñuela E. 1986; Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Research 14:6835–6844
    [Google Scholar]
  45. González A., Calvo V., Almazán F., Almendral J. M., Ramirez J. C., de la Vega I., Blasco R., Viñuela E. 1990; Multigene families in African swine fever virus: family 360. Journal of Virology 64:2073–2081
    [Google Scholar]
  46. Goorha R., Granoff A. 1979; Icosahedral cytoplasmic deoxy- viruses. Newly characterised vertebrate viruses. Comparative Virology 14:367–369
    [Google Scholar]
  47. Hall R. L., Moyer R. W. 1993; Identification of an Amsacta spheroidin-like protein within the occlusion bodies of Choristoneura entomopox viruses. Virology 192:179–187
    [Google Scholar]
  48. Hammond J. M., Dixon L. K. 1991; Vaccinia virus-mediated expression of African swine fever virus genes. Virology 181:778–782
    [Google Scholar]
  49. Hammond J. M., Kerr S. M., Smith G. L., Dixon L. K. 1992; An African swine fever virus gene with homology to DNA ligases. Nucleic Acids Research 20:2667–2671
    [Google Scholar]
  50. Hingamp P. M., Arnold J. E., Mayer R. J., Dixon L. K. 1992; A ubiquitin conjugating enzyme encoded by African swine fever virus. EMBO Journal 11:361–366
    [Google Scholar]
  51. Hernandez A. M. M., Tabarés E. 1991; Expression and characterization of the thymidine kinase gene of African swine fever virus. Journal of Virology 65:1046–1052
    [Google Scholar]
  52. Holland L. J., Suksang C., Wall A. A., Roberts L. R., Moser D. R., Bhattacharya A. 1992; A major estrogen-regulated protein secreted from the liver of Xenopus laevis is a member of the serpin superfamily: nucleotide sequence of cDNA and hormonal regulation of mRNA. Journal of Biological Chemistry 267:7053–7059
    [Google Scholar]
  53. Howard S. T., Chan Y. S., Smith G. L. 1991; Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family. Virology 180:633–647
    [Google Scholar]
  54. Hunter T. 1987; A thousand and one protein kinases. Cell 50:823–829
    [Google Scholar]
  55. Jentsch S. 1992; The ubiquitin conjugating system. Annual Review of Genetics 26:179–207
    [Google Scholar]
  56. Kahn J. S., Esteban M. 1990; Identification of the point mutations in two vaccinia virus nucleoside triphosphate phosphohydrolase 1 temperature-sensitive mutants and role of this DNA-dependent ATPase enzyme in virus gene expression. Virology 174:459–471
    [Google Scholar]
  57. Karnost M. R., Prasad S. V., Wells M. A. 1989; Primary structure of a member of the serpin superfamily of proteinase inhibitors from an insect Manduca sexta . Journal of Biological Chemistry 264:965–972
    [Google Scholar]
  58. Kletzin A. 1992; Molecular characterisation of a DNA ligase gene of the extremely thermophilic archaeon Desulfurolobus ambivalens shows close phylogenetic relationship to eukaryotic ligases. Nucleic Acids Research 20:5389–5396
    [Google Scholar]
  59. Kotwal G. J., Moss B. 1989; Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. Journal of Virology 63:600–606
    [Google Scholar]
  60. Kozak M. 1989; The scanning model for translation - an update. Journal of Cell Biology 108:229–241
    [Google Scholar]
  61. Kuznar J., Salas M. L., Viñuela E. 1980; DNA-dependent RNA polymerase in African swine fever virus. Virology 101:169–175
    [Google Scholar]
  62. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  63. Lin S., Chen W., Broyles S. S. 1992; The vaccinia virus B1R gene product is a serine/threonine protein kinase. Journal of Virology 66:2717–2723
    [Google Scholar]
  64. López-Otín C., Sim óN, Méndez E., Viñuela E. 1988; Mapping and sequence of the gene encoding protein p37, a major structural protein of African swine fever virus. Virus Genes 1:291–303
    [Google Scholar]
  65. López-Otín C., Freue J. M. P., Parra F., Méndez E., Viñuela E. 1990; Mapping and sequence of the gene coding for protein p72, the major capsid protein of African swine fever virus. Virology 175:477–484
    [Google Scholar]
  66. Lord K. A., Hoffman-Liebermann B., Liebermann D. A. 1990; Sequence of MyD116 cDNA: a novel myeloid differentiation primary response gene induced by IL6. Nucleic Acids Research 18:28232
    [Google Scholar]
  67. Lu Z., Kutish G. F., Sussman M. D., Rock D. L. 1993; An African swine fever virus gene with a similarity to eukaryotic RNA polymerase subunit 6. Nucleic Acids Research 21:2940
    [Google Scholar]
  68. Lundberg L. G., Thoresson H. O., Karlström O. H., Nyman P. O. 1983; Nucleotide sequence of the structural gene for dUTPase of Escherichia coli K-12. EMBO Journal 2:967–971
    [Google Scholar]
  69. Mcgeoch D. J. 1990; Protein sequence comparisons show that the ‘pseudoproteases’ encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Research 18:4105–4110
    [Google Scholar]
  70. Mcgeoch D. J., Barnett B. C. 1991; Neurovirulence factor. Nature; London: 353609
    [Google Scholar]
  71. Matthews R. E. F. 1982; Classification and nomenclature of viruses. Intervirology 17:1–199
    [Google Scholar]
  72. Mehta P. K., Christen P. 1993; Homology of pyridoxal-5′-phosphate-dependent amino transferases with the cobC (cobalamin synthesis), nifs (nitrogen fixation), pabC (p-aminobenzoate synthesis) and mal Y (abolishing endogenous induction of the maltose system) gene products. European Journal of Biochemistry 211:373–376
    [Google Scholar]
  73. Neilan J. G., Lu Z., Alfonso C. L., Kutish G. F., Sussman M. D., Rock D. L. 1993; An African swine fever virus gene with similarity to the proto-oncogene bcl-2 and the Epstein-Barr virus gene BHRF1. Journal of Virology 67:4391–4394
    [Google Scholar]
  74. Oliver S. G. 147 Other Authors 1992; The complete DNA sequence of yeast chromosome III. Nature; London: 35738–46
    [Google Scholar]
  75. Ouzounis C., Sander C. 1993; Homology of the Nifs family of proteins to a new class of pyridoxal phosphate-dependent enzymes. FEBS Letters 322:159–164
    [Google Scholar]
  76. Palumbo G. J., Pickup D. J., Fredrickson T. N., Mcintyre L. J., Buller R. M. L. 1989; Inhibition of an inflammatory response is mediated by a 38 kDa protein of cowpox virus. Virology 172:262–273
    [Google Scholar]
  77. Pati U. K., Weissman S. M. 1989; Isolation and molecular characterisation of a cDNA encoding the 23-kDa subunit of human RNA polymerase II. Journal of Biological Chemistry 264:13114–13121
    [Google Scholar]
  78. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, U.S.A 85:2444–2448
    [Google Scholar]
  79. Pena L., Yáñez R. J., Revilla Y., Viñuela E., Salas M. L. 1993; African swine fever virus guanyltransferase. Virology 193:319–328
    [Google Scholar]
  80. Prados F. J., Viñuela E., Alcamí A. 1993; Sequence and characterization of the major early phosphoprotein p32 of African swine fever virus. Journal of Virology 67:2475–2485
    [Google Scholar]
  81. Ray C. A., Black R. A., Kronheim S. R., Greenstreet T. A., Sleath P. R., Salvesen G. S., Pickup D. J. 1992; Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 β converting enzyme. Cell 69:597–604
    [Google Scholar]
  82. Rempel R. E., Traktman P. 1992; Vaccinia virus B1 kinase: phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. Journal of Virology 66:4413–4426
    [Google Scholar]
  83. Rempel R. E., Anderson M. K., Evans E., Traktman P. 1990; Temperature-sensitive vaccinia virus mutants identify a gene with an essential role in viral replication. Journal of Virology 64:574–583
    [Google Scholar]
  84. Rodríguez J. F., Kahn J. S., Esteban M. 1986; Molecular cloning, encoding sequence and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene. Proceedings of the National Academy of Sciences, U.S.A 83:9566–9570
    [Google Scholar]
  85. Rodríguez J. M., Salas M. L., Viñuela E. 1992; Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor S1I in African swine fever. Virology 186:40–52
    [Google Scholar]
  86. Rodríguez J. M., Yáñez R. J., Almazán F., Viñuela E., Rodríguez J. F. 1993; African swine fever virus encodes a CD2 homology responsible for the adhesion of erythrocytes to infected cells. Journal of Virology 67:5312–5320
    [Google Scholar]
  87. Salas M. L., Kuznar J., Viñuela E. 1983; Effect of rifamycin derivatives and coumermycin A1 on in vitro RNA synthesis by African swine fever virus. Archives of Virology 77:77–80
    [Google Scholar]
  88. Salas M. L., Salas J., Viñuela E. 1988; Phosphorylation of African swine fever proteins in vitro and in vivo . Biochimie 70:627–635
    [Google Scholar]
  89. Santarén J. F., Viñuela E. 1986; African swine fever virus induced polypeptides in Vero cells. Virus Research 5:391–405
    [Google Scholar]
  90. Simón-Mateo C., Andrés G., Viñuela E. 1993; Polyprotein processing in African swine fever virus: a novel gene expression strategy for a DNA virus. EMBO Journal 12:2977–2987
    [Google Scholar]
  91. Smith C. A., Davis T., Anderson D., Solam L., Beckmann M. P., Jerzy R., Dower S. K., Cosman D., Goodwin R. G. 1990; A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023
    [Google Scholar]
  92. Smith G. L., Chan Y. S. 1991; Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. Journal of General Virology 72:511–518
    [Google Scholar]
  93. Smith G. L., Howard S. T., Chan Y. S. 1989; Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. Journal of General Virology 70:2333–2343
    [Google Scholar]
  94. Smith G. L., Chan Y. S., Howard S. T. 1991; Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. Journal of General Virology 72:1349–1376
    [Google Scholar]
  95. Sogo J. M., Almendral J. M., Talavera A., Viñuela E. 1984; Terminal and internal inverted repetitions in African swine fever virus DNA. Virology 133:271–275
    [Google Scholar]
  96. Spriggs M. K., Hruby D. K., Maliszewski C. R., Pickup D. J., Sino J. E., Buller M. L., van Slyke J. 1992; Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71:145–152
    [Google Scholar]
  97. Staden R. 1982; Automation of computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  98. Staden R. 1990; An improved sequence handling package that runs on the Apple Macintosh computer. Computer Applications in the Biosciences 6:387–393
    [Google Scholar]
  99. Sumption K. J., Hutchings G. H., Wilkinson P. J., Dixon L. K. 1990; Variable regions on the genome of Malawi isolates of African swine fever virus. Journal of General Virology 71:2331–2340
    [Google Scholar]
  100. Sussman M. D., Lu Z., Kutish G., Alfonso C. L., Roberts P., Rock D. C. 1992; Identification of an African swine fever virus gene with similarity to a myeloid differentiation primary response gene and a neurovirulence associated gene of herpes simplex virus. Journal of Virology 66:5586–5589
    [Google Scholar]
  101. Tabarés E., Martínez J., Martín J., Escribano J. M. 1983; Proteins specified by African swine fever virus. IV. Glycoproteins and phosphoproteins. Archives of Virology 77:167–180
    [Google Scholar]
  102. Traktman P., Anderson M. K., Rempel R. E. 1989; Vaccinia virus encodes an essential gene with strong homology to protein kinases. Journal of Biological Chemistry 264:21458–21461
    [Google Scholar]
  103. Twardzik D. R., Brown J. P., Ranchalis J. E., Todaro G. J., Moss B. 1985; Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. Proceedings of the National Academy of Sciences, U.S.A 82:5300–5304
    [Google Scholar]
  104. Upton C., Macen J. L., Schreiber M. P., Mcfadden G. 1991; Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology 184:370–382
    [Google Scholar]
  105. Upton C., Mossman K., Mcfadden G. 1992; Encoding of a homolog of the IFN-γ receptor by myxoma virus. Science 258:1369–1372
    [Google Scholar]
  106. Viñuela E. 1985; African swine fever virus. Current Topics in Microbiology and Immunology 116:151–170
    [Google Scholar]
  107. Viñuela E. 1987; African swine fever virus. In Developments in Veterinary Virology pp. 31–49 Becker Y. Edited by The Hague: Martinus Nijhoff;
    [Google Scholar]
  108. von Heune G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  109. Vydelingum S., Baylis S. A., Bristow C., Smith G. L., Dixon L. K. 1993; Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. Journal of General Virology 74:2125–2130
    [Google Scholar]
  110. Wilkinson P. J. 1989; African swine fever. In Virus Infections of Porcines pp. 17–35 Pensaert M. B. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  111. Woychik N. A., Liao S. M., Kolodziej P. A., Young R. A. 1990; Subunits shared by eukaryotic nuclear-RNA polymerases. Genes and Development 4:313–323
    [Google Scholar]
  112. Yáñez R. J., Viñuela E. 1993; African swine fever virus encodes a DNA ligase. Virology 193:531–536
    [Google Scholar]
  113. Yáñez R. J., Boursnell M., Nogal M. L., Yuste L., Viñuela E. 1993a; African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA- dependent RNA polymerases. Nucleic Acids Research 21:2423–2427
    [Google Scholar]
  114. Yáñez R. J., Rodríguez J. M., Rodríguez J. F., Salas M. L., Viñuela E. 1993b; African swine fever virus thymidylate kinase gene: sequence and transcriptional mapping. Journal of General Virology 74:1633–1638
    [Google Scholar]
  115. Zheng L., White R. H., Cash V. L., Jack R. F., Dean D. R. 1993; Cysteine desulphurase activity indicates a role for Nifs in metallocluster biosynthesis. Proceedings of the National Academy of Sciences, U.S.A 90:2754–2758
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-75-7-1655
Loading
/content/journal/jgv/10.1099/0022-1317-75-7-1655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error