1887

Abstract

We have studied the presence and significance of retroviral genome-derived DNA in the core of human immunodeficiency virus (HIV) particles produced from transfections of HXB2 expression vectors in COS-7 cells and from HIV type 1 III chronically infected H9 cells. Viruses purified by sucrose cushion centrifugation and treated with DNase I contained 1000-fold more viral RNA than DNA. However protease-defective viruses that contained only p160 had less than 100 times the amount of DNA in their cores than wild-type viruses suggesting that the p66/p51 form of reverse transcriptase was responsible for DNA transcription. Viruses produced by transfections in the presence of 3′-azido-3′-deoxythymidine (AZT) contained the viral RNA genome but only DNA of premature length because of the chain terminating effects of AZT. However such viruses were as infectious for CD4 cells as wild-type virus. We conclude that retrovirus-derived DNA in HIV-1 particles is not required for infection and does not play a significant role in this process.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-7-1605
1994-07-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/7/JV0750071605.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-7-1605&mimeType=html&fmt=ahah

References

  1. Arts E. J., Wainberg M. A. 1994; Preferential incorporation of nucleoside analogs after template switching during human immunodeficiency virus reverse transcription. Antimicrobial Agents and Chemotherapy in press
    [Google Scholar]
  2. Barat C., Legrice S. F. J., Darlix J. L. 1991; Interaction of HIV-1 reverse transcriptase with a synthetic form of its replication primer, tRNAlys3. Nucleic Acids Research 19:751–756
    [Google Scholar]
  3. Barat C., Lullen V., Schatz O., Keith G., Nugeyre M. T., Gruninger-Leitch F., Barré-Sinoussi F., Legrice S. F. J., Darlix J. L. 1989; HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO Journal 8:3279–3286
    [Google Scholar]
  4. Biswal N., Mccain B., Benyesh-Melnick M. 1971; The DNA of murine sarcoma-leukemia virus. Virology 45:697–706
    [Google Scholar]
  5. Chaconas G., Van de Sande J. H. 1980; 5′γ-32P-labelling of RNA and DNA restriction fragments. Methods in Enzymology 65:75–88
    [Google Scholar]
  6. Craven R. C., Bennet R. P., Wills J. W. 1991; Role of the avian retroviral protease in the activation of reverse transcriptase during virion assembly. Journal of Virology 65:6205–6217
    [Google Scholar]
  7. Crawford S., Goff S. P. 1984; A deletion mutation in the 5′ part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins. Journal of Virology 53:899–907
    [Google Scholar]
  8. Davis N. K., Rueckert R. R. 1972; Properties OF a ribonucleo-protein particle isolated from Nonidet P-40-treated Rous sarcoma virus. Journal of Virology 10:1010–1020
    [Google Scholar]
  9. Ferris A. L., Hizi A., Showalter S. D., Pichuantes S., Babe L., Craik C. S., Hughes S. M. 1990; Immunologic and proteolyticanalysis of HIV-1 reverse transcriptase structure. Virology 175:456–464
    [Google Scholar]
  10. Furman P. A., Fyfe J. A., St.Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Nusinoff-Lehrman S., Bolognesi D. P., Broder S., Mitsuya H., Barry D. W. 1986; Phosphorylation of 3′-azido-3′-deoxythymidine and selection interaction of the 5′-triphophate with human immunodeficiency virus reverse transcriptase. Proceedings of the National Academy of Sciences, U.S.A 83:8333–8337
    [Google Scholar]
  11. Ganem D., Varmus H. E. 1987; The molecular biology of the hepatitis B viruses. Annual Review of Biochemistry 56:651–693
    [Google Scholar]
  12. Gao W.-Y., Cara A., Gallo R. C., Lori F. 1993; Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type-1 replication. Proceedings of the National Academy of Sciences, U.S.A 90:8925–8929
    [Google Scholar]
  13. Geleziunas R., Arts E. J., Boulerice F., Goldman H., Wainberg M. A. 1993; Effects of 3′-azido-3′-deoxythymidine on human immunodeficiency virus type 1 replication in human fetal brain macrophages. Antimicrobial Agents and Chemotherapy 37:1305–1312
    [Google Scholar]
  14. Gopalakrishnan V., Peliska J. A., Benkovic J. 1992; Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationships between the polymerase and RNase H activities. Proceedings of the National Academy of Sciences, U.S.A 89:10763–10767
    [Google Scholar]
  15. Gottlinger M. G., Sodroski J. G., Haseltine W. A. 1989; Role of capsid precursor processing and myristylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, U.S.A 86:5781–5785
    [Google Scholar]
  16. Haseltine W. A., Kleid D. G., Panet A., Rothenberg E., Baltimore D. 1976; Ordered transcription of RNA tumour virus genomes. Journal of Molecular Biology 26:4298–4032
    [Google Scholar]
  17. Huang P., Farquhar D., Plunkett W. 1990; Selective action of 3′-azido-3′-deoxythymidine 5′-triphosphate on viral reverse transcriptase and human DNA polymerase. Journal of Biological Chemistry 265:11914–11918
    [Google Scholar]
  18. Jacobsen H., Ahlborn-Laake L., Gugel R., Mous J. 1992; Progression of early steps of human immunodeficiency virus type 1 replication in the presence of an inhibitor of viral protease. Journal of Virology 66:5087–5091
    [Google Scholar]
  19. Jiang M., Mak J., Wainberg M. A., Parniak M. A., Cohen E., Kleiman L. 1992; Variable tRNA content in HIV-1IIIB. Biochemical and Biophysical Research Communications 185:1005–1015
    [Google Scholar]
  20. Kleiman L., Caudry S., Boulerice F., Wainberg M. A., Parniak M. A. 1991; Incorporation of tRNA into normal and mutant HIV-1. Biochemical and Biophysical Research Communications 174:1272–1280
    [Google Scholar]
  21. Larder B., Purifoy D., Powell K., Darby G. 1987; AIDS virus reverse transcriptase defined by high level expression in Escherichia coli. EMBO Journal 6:3133–3137
    [Google Scholar]
  22. Levinson W., Bishop J. M., Quintrell N., Jackson J. 1970; Presence of DNA in Rous sarcoma virus. Nature; London: 2271023–1025
    [Google Scholar]
  23. Lori F., Veronese F., de Vico A. L., Lusso P., Reitz M. S., Gallo R. C. 1992; Viral DNA carried by human immunodeficiency virus type 1 virions. Journal of Virology 66:5067–5074
    [Google Scholar]
  24. Lowe D. M., Aitken A., Bradley C., Darby G. K., Larder B. A., Powell K. L., Purifoy D. J. M., Tisdale M., Stammers D. K. 1988; HIV-1 reverse transcriptase: crystallization and analysis of domain structure by limited proteolysis. Biochemistry 27:8884–8889
    [Google Scholar]
  25. Luo G., Taylor J. 1990; Template switching by reverse transcriptase during DNA synthesis. Journal of Virology 64:4321–4328
    [Google Scholar]
  26. Mitsuya H., Weinhold K. J., Furman P. A., St. Clair M. H., Lehrman S. N., Gallo R. C., Bolognesi D., Barry D. W., Broder S. 1985; 3′-Azido-3′-deoxythymidine (BWA509U): an antiviral agent that inhibits the infectivity and cytopathic effects of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proceedings of the National Academy of Sciences, U.S.A 82:7096–7100
    [Google Scholar]
  27. Omer C. A., Resnick R., Faras A. J. 1984; Evidence for involvement of an RNA primer in initiation of strong-stop plus DNA synthesis during reverse transcriptase in vitro. Journal of Virology 50:465–470
    [Google Scholar]
  28. Panganiban A. T., Fiore D. 1988; Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241:1064–1069
    [Google Scholar]
  29. Park J., Morrow C. D. 1992; The nonmyristylated Pr160gag-pol polyprotein of human immunodeficiency virus type 1 interacts with Pr55gag and is incorporated into virus-like particles. Journal of Virology 66:6304–6313
    [Google Scholar]
  30. Peliska J. A., Benkovic S. J. 1992; Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258:1112–1118
    [Google Scholar]
  31. Peng C., Ho B. K., Change T. W., Chang N. T. 1989; Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. Journal of Virology 63:2550–2556
    [Google Scholar]
  32. Peng C., Chang N. T., Chang T. W. 1991; Identification and characterization of human immunodeficiency virus type 1 gag-pol fusion protein in transfected mammalian cells. Journal of Virology 65:2751–2756
    [Google Scholar]
  33. Restle T., Muller B., Goody R. S. 1990; Dimerization of human immunodeficiency virus type 1 reverse transcriptase: a target for chemotherapeutic intervention. Journal of Biological Chemistry 265:8986–8988
    [Google Scholar]
  34. Richter-Cook N. J., Howard K. J., Cirino N. M., Wohrl B. M., Legrice S. F. J. 1992; Interaction of tRNAlys3 with multiple forms of human immunodeficiency virus reverse transcriptase. Journal of Biological Chemistry 267:15952–15957
    [Google Scholar]
  35. Sarih-Cottin L., Brodier B., Musier-Forsyth K., Andreola M. L., Barr P. J., Litvak S. 1992; Preferential interaction of human immunodeficiency virus reverse transcriptase with two regions of primer tRNAlys as evidenced by footprinting studies and inhibition with synthetic oligoribonucleotides. Journal of Molecular Biology 226:1–6
    [Google Scholar]
  36. Trono D. 1992; Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. Journal of Virology 66:4893–4900
    [Google Scholar]
  37. Weiss R., Teich N., Varmus H., Coffin J. 1985 RNA Tumor Viruses New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Zack J. A., Annigo S. J., Witsman S. R., Go A. S., Haislip A., Chen I. S. Y. 1990; HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61:213–222
    [Google Scholar]
  39. Zack J. A., Haislip A. M., Knogstad P., Chen I. S. Y. 1992; Incomplete reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function on intermediates in the retroviral life cycle. Journal of Virology 66:1717–1725
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-75-7-1605
Loading
/content/journal/jgv/10.1099/0022-1317-75-7-1605
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error