1887

Abstract

We have analysed the cDNA coding for the envelope glycoprotein (El) gene and the terminal non-translated regions (NTRs) of the avirulent Semliki Forest virus (SFV) A774 (A7) variant. The El gene exhibited 98·5 % identity to the SFV prototype strain L10 (WT) sequence at the nucleotide level. Of the 34 single base substitutions, six led to a change in the deduced amino acid sequence. The 3′ NTR of A7 consisted of a 101 nucleotide sequence, not found in WT, followed by five tandemly arranged sequence motifs, two of which were truncated forms of the others. One full-length and one truncated repeat are found at the 3′ NTR of WT. The repeats of A7 were followed by a non-repeating sequence, very similar to the equivalent region in WT. Owing to the unique sequence motif and the tandem repeats, the 3′ NTR of A7 is 334 nucleotides longer than that of WT. Each of the repeats had an internal 12 nucleotide motif complementary to a conserved sequence in the 5′ -terminal non-structural protein 1- encoding region, thought to be important in alphavirus RNA replication. In the 5′ NTR, three point mutations were found. The conserved sequence binding to the repeated 3 ′ motifs was identical in A7 and WT.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-6-1499
1994-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/6/JV0750061499.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-6-1499&mimeType=html&fmt=ahah

References

  1. Atkins G. J. 1983; The avirulent A7 strain of Semliki Forest virus has reduced cytopathogenicity for neuroblastoma cells compared to the virulent L10 strain. Journal of General Virology 64:1401–1404
    [Google Scholar]
  2. Balluz I. M., Glasgow G. M., Killen H. M., Mabruk M. J. M. E. F., Sheahan B. J., Atkins G. J. 1993; Virulent and avirulent strains of Semliki Forest virus show similar cell tropism for the murine central nervous system but differ in the severity and rate of induction of cytolytic damage. Neuropathology and Applied Neurobiology 19:233–239
    [Google Scholar]
  3. Barrett N. P., Sheahan B. R., Atkins G. J. 1980; Isolation and preliminary characterization of Semliki Forest virus mutants with altered virulence. Journal of General Virology 49:141–147
    [Google Scholar]
  4. Bradish C. J., Allner K., Maber H. B. 1971; The virulence of original and derived strains of Semliki Forest virus for mice, guinea- pigs and rabbits. Journal of General Virology 12:141–160
    [Google Scholar]
  5. Davis N. L., Powell N., Greenwald G. F., Willis L. V., Johnson B. J. B., Smith J. F., Johnston R. E. 1991; Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: construction of single and multiple mutants in a full-length cDNA clone. Virology 183:20–31
    [Google Scholar]
  6. Evans D. M. A., Dunn G., Minor P. D., Schild G. C., Cann A. J., Stanway G., Almond J. W., Currey K., Maizel J. V. Jr 1985; Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature; London: 314548–550
    [Google Scholar]
  7. Fazakerley J. K., Pathak S., Scallan M., Amor S., Dyson H. 1993; Replication of the A7 (74) strain of Semliki Forest virus is restricted in neurons. Virology 195:627–637
    [Google Scholar]
  8. Frey T. K., Gard T. L., Strauss J. H. 1979; Biophysical studies on circle formation by Sindbis virus 49S RNA. Journal of Molecular Biology 132:1–18
    [Google Scholar]
  9. Garoff H. A., Frischauf A.-M., Simons K., Lehrach H., Delius H. 1980; Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature; London: 288236–241
    [Google Scholar]
  10. Gates M. C., Sheahan B. J., O′Sullivan M. A., Atkins G. J. 1985; The pathogenicity of the A7, M9 and L10 strains of Semliki Forest virus for weanling mice and primary mouse brain cell cultures. Journal of General Virology 66:2365–2373
    [Google Scholar]
  11. Glasgow G. M., Sheahan B. J., Atkins G. J., Wahlberg J. M., Salminen A., Liljeström P. 1991; Two mutations in the envelope glycoprotein E2 of Semliki Forest virus affecting the maturation and entry patterns of the virus alter pathogenicity for mice. Virology 185:741–748
    [Google Scholar]
  12. Kinney R. M., Chang G.-J., Tsuchiya K. R., Sneider J. M., Roehrig J. T., Woodward T. M., Trent D. W. 1993; Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5′-noncoding region and the E2 envelope glycoprotein. Journal of Virology 67:1269–1277
    [Google Scholar]
  13. Lustig S., Jackson A. C., Hahn C. S., Griffin D. E., Strauss E. G., Strauss J. H. 1988; Molecular basis of Sindbis virus neurovirulence in mice. Journal of Virology 62:2329–2336
    [Google Scholar]
  14. Mcintosh B. M., Worth B. C., Kokernot R. H. 1961; Isolation of Semliki Forest virus from Aedes (Aëdimorphus) argenteo- punctatus (THEOBALD) collected in Portugese East Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 55:192–198
    [Google Scholar]
  15. Mokhtarian F., Swoveland P. 1987; Predisposition to EAE- induction in resistant mice by prior infection with Semliki Forest virus. Journal of Immunology 138:3264–3268
    [Google Scholar]
  16. Omata T., Kohara M., Kuge S., Komatsu T., Abe S, Kameda A., Itoh H., Arita M., Wimmer E., Nomoto A. 1986; Genetic analysis of the attenuation phenotype of poliovirus type 1. Journal of Virology 58:348–358
    [Google Scholar]
  17. Ou J.-H., Strauss E. G., Strauss J. H. 1981; Comparative studies of the 3′-terminal sequences of several alphavirus RNAs. Virology 109:281–289
    [Google Scholar]
  18. Ou J.-H., Trent D. W., Strauss J. H. 1982; The 3′ non-coding regions of alphavirus RNAs contain repeating sequences. Journal of Molecular Biology 156:719–730
    [Google Scholar]
  19. Ou J.-H., Strauss E. G., Strauss J. H. 1983; The 5′-terminal sequences of the genomic RNAs of several alphaviruses. Journal of Molecular Biology 168:1–15
    [Google Scholar]
  20. Pence D. F., Davis N. L., Johnston R. E. 1990; Antigenic and genetic characterization of Sindbis virus monoclonal antibody escape mutants which define a pathogenesis domain on glycoprotein E2. Virology 175:41–49
    [Google Scholar]
  21. Polo J. M., Johnston R. E. 1990; Attenuating mutations in glycoproteins El and E2 of Sindbis virus produce a highly attenuated strain when combined in vitro . Journal of Virology 64:4438–4444
    [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 745463–5467
    [Google Scholar]
  23. Smithburn K. C., Haddow A. J. 1944; Semliki Forest virus. I. Isolation and pathogenic properties. Journal of Immunology 49:141–157
    [Google Scholar]
  24. Smyth J. M. B., Sheahan B. J., Atkins G. J. 1990; Multiplication of virulent and demyelinating Semliki Forest virus in the mouse central nervous system: consequences in BALB/c and SJL mice. Journal of General Virology 71:2575–2583
    [Google Scholar]
  25. Takkinen K. 1986; Complete nucleotide sequence of the nonstructural protein genes of Semliki Forest virus. Nucleic Acids Research 14:5667–5682
    [Google Scholar]
  26. Tucker P. C., Griffin D. E. 1991; Mechanism of altered Sindbis virus neurovirulence associated with a single amino acid change in the E2 glycoprotein. Journal of Virology 65:1551–1557
    [Google Scholar]
  27. Wu L.-X., Mäkelä M. J., Röyttä M., Salmi A. 1988; Effect of viral infection on experimental allergic encephalomyelitis in mice. Journal of Neuroimmunology 18:139–153
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-6-1499
Loading
/content/journal/jgv/10.1099/0022-1317-75-6-1499
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error