1887

Abstract

Sequential overlapping Gag protein-derived oligopeptides of human immunodeficiency virus type 1 (HIV-1) 22 to 24 amino acids long, were synthesized and tested for antiviral activity. Two synthetic peptides, one derived from the matrix protein p17 (NPGLLETSEGCRQ, amino acids 47 to 59) and one located in the capsid protein p24 (PAATLEEMMTA, amino acids 339 to 349) inhibited the production of infectious virus when added to HIV-l-infected cultures when used in the range of 20 to 200 μg/ml. As shown by thin section electron microscopy, peptide treatment resulted in the release of immature, deformed virus particles suggesting that the two peptides interfered with assembly and maturation. Other Gag protein-derived oligopeptides had little or no influence on virus production. To characterize further the functionally active regions we synthesized peptide derivatives with three consecutive amino acids substituted by alanine; they did not cause inhibition. Therefore the regions responsible for inhibition were located between amino acids 50 to 61 in pl7, and 342 to 350 in p24. These observations might lead to the development of a new antiviral strategy affecting the late stage of virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-6-1469
1994-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/6/JV0750061469.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-6-1469&mimeType=html&fmt=ahah

References

  1. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986; Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature; London: 321441–443
    [Google Scholar]
  2. Collier N. C., Knox K., Schlesinger M. J. 1991; Inhibition of influenza virus formation by a peptide that corresponds to sequences in the cytoplasmic domain of the hemagglutinin. Virology 183:769–772
    [Google Scholar]
  3. Dutia B. M., Frame M. C., Subak-Sharpe J. H., Clark W. N., Marsden H. 1986; Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature; London: 321439–441
    [Google Scholar]
  4. Gaudreau P., Paradis H., Langelier Y., Brazeau P. 1990; Synthesis and inhibitory potency of peptides corresponding to the subunit 2 C-terminal region of Herpes virus ribonucleotide reductases. Journal of Medicinal Chemistry 33:723–730
    [Google Scholar]
  5. Gelderblom H. R. 1991; Assembly and morphology of HIV: potential effect of structure on viral function. AIDS 5:617–638
    [Google Scholar]
  6. Gelderblom H. R., Hausmann E. H. S., Üzel M., Pauli G., Koch M. A. 1987; Fine structure of lentiviruses. In Retroviral Proteases. Control of Maturation and Morphogenesis pp 159–180 Pearl L. H. Edited by London: Macmillan Press;
    [Google Scholar]
  7. Gheysen D., Jacobs E., Foresta F., Thiriart C., Francotte M., Thines D., DeWilde M. 1989; Assembly and release of HIV-1 precursor pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59:103–112
    [Google Scholar]
  8. Gorelick R. J., Nigida S. M., Bess J. W., Arthur L. O., Henderson L. E., Rein A. 1990; Non-infectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. Journal of Virology 64:3207–3211
    [Google Scholar]
  9. Göttlinger H. G., Sodroski J. G., Haseltine W. A. 1989; Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences U.S.A.: 865781–5785
    [Google Scholar]
  10. Göttlinger H. G., Dorfman T., Sodroski J. G., Haseltine W. A. 1991; Effects of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proceedings of the National Academy of Sciences U.S.A.: 883195–3199
    [Google Scholar]
  11. Göttlinger J. P., Wege H., Preiss L., Jentsch K. D. 1988; Detection of human immunodeficiency virus and other retroviruses in cell culture supernatants by a reverse transcriptase microassay. Journal of Virological Methods 19:161–168
    [Google Scholar]
  12. Haist S., März J., Wolf H., Modrow S. 1992; Reactivities of HIV-1 gag-derived peptides with antibodies of HIV-1 infected and uninfected humans. AIDS Research and Human Retroviruses 8:1909–1917
    [Google Scholar]
  13. Henderson J. E., Sowder R. C., Copeland T. D., Oroszlan S., Beneveniste R. E. 1990; Gag precursors of HIV and SIV are cleaved into six proteins found in the mature virions. Journal of Medical Primatology 19:411–419
    [Google Scholar]
  14. Hoglund S., Üferstedt L.-G., Nilson A., Üzel M., Winkel T., Skoglund U., Gelderblom H. R. 1991; Analysis of the assembly of the HIV core by electron microscope tomography. In Retroviral Proteases Control of Maturation and Morphogenesis pp 149–157 Pearl L. E. Edited by London: Macmillan Press;
    [Google Scholar]
  15. Hu S.-L., Travis B. M., Garrigues J., Zarling J. M., Sridhar P., Dykers T., Eichberg J. W., Alpers C. 1990; Processing, assembly, and immunogenicity of human immunodeficiency virus core antigens expressed by recombinant vaccinia virus. Virology 179:321–329
    [Google Scholar]
  16. Land S., Beaton F., McPhee D. A., Gust I. D. 1989; Comparison of core antigen (p24) assay and reverse transcriptase activity for detection of human immunodeficiency virus type 1 replication. Journal of Clinical Microbiology 27:486–489
    [Google Scholar]
  17. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Dorane E. R., Rafalski J. A., Whitehorn E. A., Baumeister K., Ivanoff L, Pearson M. L., Lautenberger J. A., Papas T. S., Ghrayeb J., Chang N. T., Gallo R. C., Wong-Staal F. 1985; Complete nucleotide sequence of the AIDS virus, HTLV III. Nature; London: 313277–284
    [Google Scholar]
  18. Schätzl H., Gelderblom H. R., Nitschko H., Von Der Helm K. 1991; Analysis of non-infectious HIV particles produced in presence of HIV proteinase inhibitor. Archives of Virology 120:71–81
    [Google Scholar]
  19. South T. L., Blake P. R., Hare D. R., Summers M. F. 1991; C-terminal retro viral-type zinc finger domain from the HIV-1 nucleo-capsid protein is structurally similar to the N-terminal zinc finger domain. Biochemistry 30:6342–6349
    [Google Scholar]
  20. Telford E., Lankinen H., Marsden H. 1990; Inhibition of equine herpesvirus type 1 subtype 1-induced ribonucleotide reductase by the nonapeptide YAGAVVNDL. Journal of General Virology 71:1373–1378
    [Google Scholar]
  21. Tritch R. J., Cheng Y.-S.E., Yin H. F., Erickson-Vitanen S. 1991; Mutagenesis of protease sites in the human immunodeficiency virus type 1 gag polyprotein. Journal of Virology 65:922–930
    [Google Scholar]
  22. Trono D., Feiberg M. B., Baltimore D. 1989; HIV-1 gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 59:113–120
    [Google Scholar]
  23. Vernon S. K., Murthy S., Wilhelm J., Chanda P. K., Kalyan N., Lee S.-G., Hung P. P. 1991; Ultrastructural characterization of human immunodeficiency virus type 1 Gag-containing particles assembled in a recombinant adenovirus vector system. Journal of General Virology 72:1243–1251
    [Google Scholar]
  24. Von Poblotzki A., Wagner R., Niedrig M., Wanner G., Wolf H., Modrow S. 1993; Identification of a region in the pr55gag-polyprotein essential for HIV-1 particle formation. Virology 193:981–985
    [Google Scholar]
  25. Wills J. W., Craven R. C. 1991; Form, function, and use of retroviral gag proteins. AIDS 5:639–654
    [Google Scholar]
  26. Yu X., Matsuda Z., Lee T.-H., Essex M. 1992; The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. Journal of Virology 66:4966–4971
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-6-1469
Loading
/content/journal/jgv/10.1099/0022-1317-75-6-1469
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error