1887

Abstract

We have analysed the capacity of the trophoblast-derived malignant cell lines BeWo, JAR and JEG-3, and primary cultures of highly purified trophoblast cells to support the basal and Tat-mediated trans-activation-enhanced transcriptional activity of two distinct human immunodeficiency virus type 1 (HIV-1) isolates. Kinetic studies based on expression of long terminal repeat (LTR)-chloramphenicol acetyltransferase (CAT) constructs revealed that LTRs of both the prototype strain 3B and the highly cytopathic Zairean variant NDK were activated significantly in all target cells. Overall, the strongest activation was observed in primary trophoblasts. A novel modification of quantitative PCR was used to normalize LTR expression for transfection efficiency, enabling the calculation of specific expression rates in terms of µU CAT enzyme per fmol of transfected DNA. Using the latter criterion we determined that LTRs of both viruses were activated in decreasing order from trophoblasts to JAR, JEG-3 and BeWo cells; furthermore, the expression of HIV-1 3B LTR always significantly surpassed that of HIV-1 NDK. The effects of trans-activation on either of the LTRs, when assayed in cotransfection assays with various amounts of HIV-1 NDK-Tat expression vector, increased in a dose-dependent fashion and were comparable in a particular neoplastic cell line. Furthermore, the cell-specific LTR activity patterns did not correspond to the abundance of transcription factors binding specifically to the viral NFκB and SP1 motifs. Unlike SP1-binding proteins which were relatively abundant, substantially smaller amounts of proteins with NFκB specificity were found in all cells. Despite this apparent deficit in NFκB activity, trophoblasts supported a high basal activity of both LTRs. These data indicate that an insufficiency of basal or Tat-trans-activated LTR activity cannot account for the low level of HIV-1 replication in this important cell type.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-6-1461
1994-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/6/JV0750061461.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-6-1461&mimeType=html&fmt=ahah

References

  1. Amirhessami-Aghili N., Spector S. A. 1991; Human immunodeficiency virus type 1 infection of human placenta: potential route for fetal infection. Journal of Virology 65:2231–2236
    [Google Scholar]
  2. Backé E., Jimenez E., Unger M., Schafer A., Jauniaux E., Vogel M. 1992; Demonstration of HIV-1 infected cells in human placenta by in situ hybridization and immunostaining. Journal of Clinical Pathology 45:871–874
    [Google Scholar]
  3. Barry P. A., Pratt-Lowe E., Unger R. E., Luciw P. A. 1991; Cellular factors regulate transactivation of human immunodeficiency virus type 1. Journal of Virology 65:1392–1399
    [Google Scholar]
  4. Chandwani S., Greco M. A., Mittal K., Antoine C., Krasinski K., Borkowsky W. 1991; Pathology and human immunodeficiency virus expression in placentas of seropositive women. Journal of Infectious Diseases 163:1134–1138
    [Google Scholar]
  5. Corboy J. R., Buzy J. M., Zink M. C., Clements J. E. 1992; Expression directed from HIV long terminal repeats in the central nervous system of transgenic mice. Science 258:1804–1808
    [Google Scholar]
  6. Courgnaud V., Laure F., Brossard A., Bignozzi C., Goudeau A., Barin F., Brechot C. 1991; Frequent and early in utero HIV-1 infection. AIDS Research and Human Retroviruses 7:337–341
    [Google Scholar]
  7. David F. J. E., Autran B., Tran H. C., Menu E., Raphael M., Debre P., Hsi B. L., Wegman T. G., Barré-Sinoussi F., Chaouat G. 1992; Human trophoblast cells express CD4 and are permissive for productive infection with HIV-1. Clinical and Experimental Immunology 88:10–16
    [Google Scholar]
  8. Douglas G. C., King B. F. 1989; Isolation of pure villous cytotrophoblast from term human placenta using immunomagnetic microspheres. Journal of Immunological Methods 119:259–268
    [Google Scholar]
  9. Douglas G. C., King B. F. 1990; Differentiation of human trophoblast cells in vitro as revealed by immunocytochemical staining of desmoplakin and nuclei. Journal of Cell Science 96:131–141
    [Google Scholar]
  10. Douglas G. C., King B. F. 1992; Maternal-fetal transmission of human immunodeficiency virus: a review of possible route and cellular mechanisms of infection. Clinical Infectious Diseases 15:678–691
    [Google Scholar]
  11. Douglas G. C., Fry G. N., Teiirkill T., Holmes E., Hakim H., Jennings M., King B. F. 1991; Cell-mediated infection of human placental trophoblast with HIV in vitro. AIDS Research and Human Retroviruses 7:735–740
    [Google Scholar]
  12. Fantini J., Yahi N., Chermann J. C. 1991; Human immunodeficiency virus can infect the apical and basolateral surfaces of human colonic epithelial cells. Proceedings of the National Academy of Sciences U.S.A.: 889297–9301
    [Google Scholar]
  13. Felgner P. L., Gadek T.R, Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. 1987; Lipofection: a highly efficient, lipid-mediated DNA-trans- fection procedure. Proceedings of the National Academy of Sciences U.S.A.: 847413–7417
    [Google Scholar]
  14. Gartenhaus R., Michaels F., Hall L., Gallo R. C., Reitz M. S. Jr 1991; Relative activities of HIV-1-IIIB and HIV-lBaL LTR and tat in primary monocytes and lymphocytes. AIDS Research and Human Retroviruses 7:681–688
    [Google Scholar]
  15. Giacca M., Gutierrez M. I., Menzo S., D’Adda Di Fagagna F., Falaschi A. 1992; A human binding site for transcription factor USF/MLTF mimics the negative regulatory element of human immunodeficiency virus type 1. Virology 186:133–147
    [Google Scholar]
  16. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol transferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  17. Hennighausen L., Lubon H. 1987; Interaction of protein with DNA in vitro . Methods in Enzymology 152:721–735
    [Google Scholar]
  18. Hirsch I., Spire B., Tsunetsugu-Yokota Y., Neuveut C., Sire J., Chermann J.-C. 1990; Differences in replication and cyto- pathogenicity of human immunodeficiency virus type 1 (HIV-1) are not determined by long terminal repeats (LTR). Virology 177:759–763
    [Google Scholar]
  19. Jimenes E., Unger M., Eitelbach F., Huang Z., Wagner G., Vogel M., Grosch-Wromer I., Schafer A. 1989; Demonstration of HIV-antigens in birth placentae and therapeutic abortions. Abstract, European Placenta Group. Placenta 10:467
    [Google Scholar]
  20. Kato H., Sumimoto H., Pognonec P., Chen C. H., Rosen C. A., Roeder R. G. 1992; HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes and Development 6:655–666
    [Google Scholar]
  21. Kellogg D. E., Kwok S. 1990; Detection of human immunodeficiency virus. In PCR Protocols. A Guide to Methods and Applications pp 337–347 Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. Edited by San Diego: Academic Press;
    [Google Scholar]
  22. Lewis S. H., Reynolds-Kohler C, Nelson J. A. 1990; HIV-1 trophoblastic and villous Hofbauer cells, and haematological precursors in eight-week fetuses. Lancet i:565–568
    [Google Scholar]
  23. Maekawa T., Sudo T., Kurimoto M., Ishii S. 1991; USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1. Nucleic Acids Research 19:4689–1694
    [Google Scholar]
  24. Mattern C. F. T., Murray K., Jensen A., Farzadegan H., Pang J., Modlin J. F. 1992; Location of human immunodeficiency virus core antigen in term human placentas. Pediatrics 89:207–209
    [Google Scholar]
  25. Mayr E. 1942 Systematics and the Origin of Species from the Viewpoint of a Zoologist New York: Columbia University Press;
    [Google Scholar]
  26. Mulder-Kampinga G. A., Kuiken C., Dekker J., Scherpbier H. J., Boer K., Goudsmit J. 1993; Genomic human immunodeficiency virus type 1 RNA variation in mother and child following intra-uterine virus transmission. Journal of General Virology 74:1747–1756
    [Google Scholar]
  27. Papiernik M., Brossard Y., Mulliez N., Roume J., Brechot C., Barin F., Goudeau A., Bach J. F., Griscelli C., Henrion R., Vazeux R. 1992; Thymic abnormalities in fetuses aborted from human immunodeficiency virus type 1 seropositive women. Pediatrics 89:297–301
    [Google Scholar]
  28. Parrott C., Seidner T., Duh E., Leonard J., Theodore T. S., Buckler-White A., Martin M. A., Rabson A. B. 1991; Variable role of the long terminal repeat Spl-binding sites in human immunodeficiency virus replication in T lymphocytes. Journal of Virology 65:1414–1419
    [Google Scholar]
  29. Phillips D. M., Tan X. 1992; HIV-1 infection of the trophoblast cell line BeWo: a study of virus uptake. AIDS Research and Human Retroviruses 8:1683–1691
    [Google Scholar]
  30. Rivière Y., Blank V., Kourilsky P., Israel A. 1991; Processing of the precursor of NF/cB by the HIV-1 protease during acute infection. Nature; London: 350625–626
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Scarlatti G., Leitner T., Halapi E., Wahlberg J., Parchisio P., Clerici-Schoeller M. A., Wigzbll H., Fenyö E. M., Albert J., Uhlén M., Rossi P. 1993; Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers. Proceedings of the National Academy of Sciences U.S.A.: 901721–1725
    [Google Scholar]
  33. Schreck R., Rieber P., Baeuerle P. A. 1991; Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EM BO Journal 10:2247–2258
    [Google Scholar]
  34. Seed B., Sheen J. Y. 1988; A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene 67:271–277
    [Google Scholar]
  35. Spire B., Sire J., Zachar V., Rey F., Barré-Sinoussi F., Galibert F., Hampe A., Ghermann J.-C. 1989; Nucleotide sequence of HIV1-NDK: a highly cytopathic strain of the human immunodeficiency virus. Gene 81:275–284
    [Google Scholar]
  36. Smith M. R., Greene W. C. 1989; The same 50-kDa cellular protein binds to the negative regulatory elements of the interleukin 2 receptor alpha-chain gene and the human immunodeficiency virus type 1 long terminal repeat. Proceedings of the National Academy of Sciences U.S.A.: 868526–8530
    [Google Scholar]
  37. Titus D. E. 1991 Promega Protocols and Applications Guide, 2nd edn.. Madison: Promega;
    [Google Scholar]
  38. Valentin A., Matsuda S., Asjö B. 1990; Characterization of the in vitro maturation of monocytes and the susceptibility to HIV infection. AIDS Research and Human Retroviruses 8:977–978
    [Google Scholar]
  39. Vermund S. H., Hoff R., Fowler M. G. 1992; Expansion of the HIV/AIDS epidemic in women and infants in the 1990s. Program Abstract of the 12th Rochester Trophoblast Conference, RochesterOctober1–4 p 64
    [Google Scholar]
  40. Wolinsky S. M., Wike C. M., Korber B. T. M., Hutto C., Parks W. P., Rosenblum L. L., Kunstman K. J., Furtado M. R., Munoz J. L. 1992; Selective transmission of human immunodeficiency virus type-1 variants from mothers of infants. Science 255:1134–1137
    [Google Scholar]
  41. Yamamoto K., Mori S., Okamoto T., Shimotohno K., Kyogoku Y. 1991; Identification of transcriptional suppressor proteins that bind to the negative regulatory element of the human immunodeficiency virus type 1. Nucleic Acids Research 19:6107–6112
    [Google Scholar]
  42. Zachar V., Norskøv-Lauritsen N., Juhl C., Spire B., Chermann J.-C., Ebbesen P. 1991a; Susceptibility of cultured human trophoblasts to infection with human immunodeficiency virus type 1. Journal of General Virology 72:1253–1260
    [Google Scholar]
  43. Zachar V., Spire B., Chermann J. C., Ebbesen P. 1991b; Cultured trophoblastic choriocarcinoma cells differentialy express HIV-1 and cloned provirus. AIDS 5:457–458
    [Google Scholar]
  44. Zachar V., Spire B., Hirsch I., Chermann J.-C., Ebbesen P. 1991c; Human transformed trophoblast-derived cells lacking CD4 receptor exhibit restricted permissiveness for human immunodeficiency virus type 1. Journal of Virology 65:2102–2107
    [Google Scholar]
  45. Zachar V., Thomas R. A., Goustin A. S. 1993; Absolute quantification of target DNA: a simple competitive PCR for efficient analysis of multiple samples. Nucleic Acids Research 21:2017–2018
    [Google Scholar]
  46. Zachar V., Thomas R. A., Jones T., Goustin A. S. 1994; Vertical transmission of HIV: detection of proviral DNA in placental trophoblast. AIDS 8:129–130
    [Google Scholar]
  47. Zeichner S. L., Kim J. Y. H., Alwine J. C. 1991; Linker-scanning analysis of the transcriptional activity of the human immunodeficiency virus type 1 long germinal repeat. Journal of Virology 65:2436–2444
    [Google Scholar]
  48. Zeichner S. L., Hirka G., Andrews P. W., Alwine J. C. 1992; Differentiation-dependent human immunodeficiency virus long terminal repeat regulatory elements active in human teratocarcinoma cells. Journal of Virology 66:2268–2273
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-6-1461
Loading
/content/journal/jgv/10.1099/0022-1317-75-6-1461
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error