1887

Abstract

Previous studies have shown that the initial interaction of herpes simplex virus (HSV) with cells is binding to heparan sulphate and that HSV-1 glycoprotein C (gC) is principally responsible for this binding. Although gC-negative viral mutants are impaired for binding and entry, they retain significant infectivity. The purpose of the studies reported here was to explore the requirements for infectivity of gC-negative HSV-1 mutants. We found that absence or alteration of cell surface heparan sulphate significantly reduced the binding of gC-negative mutant virus and rendered cells resistant to infection, as shown previously for the wild-type virus. We isolated a recombinant double-mutated HSV strain that produces virions devoid of both of the known heparin-binding glycoproteins, gB and gC. The drastically impaired binding of these mutant virions to cells, relative to gC-negative and wild-type virions, indicates that gB mediates the binding of gC-negative virions to cells. Thus at least two HSV glycoproteins can independently mediate the binding of HSV to cell surface heparan sulphate to start the process of viral entry into cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-6-1211
1994-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/6/JV0750061211.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-6-1211&mimeType=html&fmt=ahah

References

  1. Baba M., Snoeck R., Pauwels R., Declercq E. 1988; Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus and human immunodeficiency virus. Antimicrobial Agents and Chemotherapy 32:1742–1745
    [Google Scholar]
  2. Bame K. J., Esko J. D. 1989; Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. Journal of Biological Chemistry 264:8059–8065
    [Google Scholar]
  3. Bame K. J., Lidholt K., Lindahl U., Esko J. D. 1991; Biosynthesis of heparan sulfate: coordination of polymer-modification reactions in a Chinese hamster ovary cell mutant defective in TV-sulfotransferase. Journal of Biological Chemistry 266:10287–10293
    [Google Scholar]
  4. Brandt C. R., Grau D. R. 1990; Mixed infection with herpes simplex virus type 1 generates recombinants with increased ocular and neurovirulence. Investigative Ophthalmology and Visual Science 31:2214–2223
    [Google Scholar]
  5. Cai W., Gu B., Person S. 1988; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. Journal of Virology 62: 2596–2604
    [Google Scholar]
  6. Campadelli-Fiume G., Stirpe D., Boscaro A., Avitabile E., Tomasi L., Barker D., Roizman B. 1990; Glycoprotein C-dependent attachment of herpes simplex virus to susceptible cells leading to productive infection. Virology 178:213–219
    [Google Scholar]
  7. Cassai E. N., Sarmiento M., Spear P. G. 1975; Comparison of the virion proteins specified by herpes simplex virus types 1 and 2. Journal of Virology 16:1327–1331
    [Google Scholar]
  8. Desai P. J., Schaffer P. A., Minson A. C. 1988; Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. Journal of General Virology 69:1147–1156
    [Google Scholar]
  9. Esko J. D. 1991; Genetic analysis of proteoglycan structure, function and metabolism. Current Opinion in Cell Biology 3:805–816
    [Google Scholar]
  10. Esko J. D., Stewart T. E., Taylor W. H. 1985; Animal cell mutants defective in glycosaminoglycan biosynthesis. Proceedings of the National Academy of Sciences U.S.A.: 823197–3201
    [Google Scholar]
  11. Esko J. D., Rostand K. S., Weinke J. L. 1988; Tumor formation dependent on proteoglycan biosynthesis. Science 241:1092–1096
    [Google Scholar]
  12. Forrester A., Farrell FI., Wilkinson G., Kaye J., Davis-Poynter N., Minson T. 1992; Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein FI coding sequences deleted. Journal of Virology 66:341–348
    [Google Scholar]
  13. Fuller A. O., Spear P. G. 1985; Specificities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. Journal of Virology 55:475–482
    [Google Scholar]
  14. Fuller A. O., Spear P. G. 1987; Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface. Proceedings of the National Academy of Sciences U.S.A.: 845454–5458
    [Google Scholar]
  15. Fuller A. O., Santos R. E., Spear P. G. 1989; Neutralizing antibodies specific for glycoprotein FI of herpes simplex virus permit viral attachment to cells but prevent penetration. Journal of Virology 63:3435–3443
    [Google Scholar]
  16. Goldstein D. J., Weller S. K. 1988; Flerpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZinsertion mutant. Journal of Virology 62:196–205
    [Google Scholar]
  17. Graham F. L., Van Der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  18. Gruenheid S., Gatzke L., Meadows FI., Tufaro F. 1993; Herpes simplex virus infection and propagation in mouse L mutant lacking heparan sulfate proteoglycans. Journal of Virology 67:93–100
    [Google Scholar]
  19. Herold B. C., Wudunn D., Soltys N., Spear P. G. 1991; Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. Journal of Virology 65:1090–1098
    [Google Scholar]
  20. Highlander S. L., Sutherland S. L., Gage P. J., Johnson D. C., Levine M., Glorioso J. C. 1987; Neutralizing monoclonal antibodies specific for herpes simplex virus glycoprotein D inhibit virus penetration. Journal of Virology 61:3356–3364
    [Google Scholar]
  21. Highlander S. L., Cai W., Person S., Levine M., Glorioso J. C. 1988; Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration. Journal of Virology 62:1881–1888
    [Google Scholar]
  22. Homa F. L., Purifoy D. J. M., Glorioso J. C., Levine M. 1986; Molecular basis of the glycoprotein C-negative phenotypes of herpes simplex virus type 1 mutants selected with a virus-neutralizing monoclonal antibody. Journal of Virology 58:281–289
    [Google Scholar]
  23. Johnson D. C., Ligas M. W. 1988; Herpes simplex viruses lacking glycoprotein D are unable to inhibit virus penetration: quantitative evidence for virus-specific cell surface receptors. Journal of Virology 62:4605–4602
    [Google Scholar]
  24. Johnson D. C., Burke R. L., Gregory T. 1990; Soluble forms of herpes simplex virus glycoprotein D bind to a limited number of cell surface receptors and inhibit virus entry into cells. Journal of Virology 64:2569–2576
    [Google Scholar]
  25. Kaner R. J., Baird A., Mansukhani A., Basilico C., Summers B. D., Florkiewicz R. Z., Hajjar D. P. 1990; Fibroblast growth factor receptor is a portal of cellular entry for herpes simplex virus type 1. Science 248:1410–1413
    [Google Scholar]
  26. Karger A., Mettenleiter T. C. 1993; Glycoproteins gill AND gp50 play dominant roles in the biphasic attachment of pseudorabies virus. Virology 194:654–664
    [Google Scholar]
  27. Keller K. M., Brauer P. R., Keller J. M. 1989; Modulation of cell surface heparan sulfate structure by growth of cells in the presence of chlorate. Biochemistry 28:8100–8107
    [Google Scholar]
  28. Koyana A. H., Uchida T. 1984; Inhibition of multiplication of herpes simplex virus type 1 by ammonium chloride and chloroquine. Virology 138:332–335
    [Google Scholar]
  29. Langeland N., Oyan A. M., Marsden H. S., Cross A., Glorioso J. C., Moore L. J., Haarr L. 1990; Localization on the herpes simplex virus type 1 genome of a region encoding proteins involved in adsorption to the cellular receptor. Journal of Virology 64:1271–1277
    [Google Scholar]
  30. Liang X., Babiuk L. A., Van Drunen Littel-Van Den Hurk S., Fitzpatrick D. R., Zamb T. J. 1991a; Bovine herpesvirus 1 attachment to permissive cells is mediated by its major glycoproteins gl, gill, and gIV. Journal of Virology 65:1124–1132
    [Google Scholar]
  31. Liang X., Babiuk L. A., Zamb T. J. 1991b; Pseudorabies virus gill and bovine herpesvirus 1 gill share complementary functions. Journal of Virology 65:5553–5557
    [Google Scholar]
  32. Lidholt K., Weinke J. L., Kiser C. S., Lugemwa F. N., Bame K. J., Lindahl U., Esko J. D. 1992; Chinese hamster ovary cell mutants defective in heparan sulfate synthesis. Proceedings of the National Academy of Sciences U.S.A.: 892267–2271
    [Google Scholar]
  33. Ligas M. W., Johnson D. C. 1988; A herpes simplex virus mutant in which glycoprotein D sequences are replaced by β-galactosidase sequences binds to but is unable to penetrate into cells. Journal of Virology 62:1486–1494
    [Google Scholar]
  34. Little S. P., Joffre J. T., Courtney R. J., Schaffer P. A. 1981; A virion-associated glycoprotein essential for infectivity of herpes simplex virus type 1. Virology 115:149–160
    [Google Scholar]
  35. Lycke E., Johansson M., Svennerholm B., Lindahl U. 1991; Binding of herpes simplex virus to cellular heparan sulphate, an initial step in the adsorption process. Journal of General Virology 12:1131–1137
    [Google Scholar]
  36. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Manservigi R., Spear P. G., Buchan A. 1977; Cell fusion induced by herpes simplex virus is promoted and suppressed by different viral glycoproteins. Proceedings of the National Academy of Sciences U.S.A.: 743913–3917
    [Google Scholar]
  38. Mettenleiter T. C., Spear P. G. 1994; Glycoprotein gB(gll) of pseudorabies virus can functionally substitute for glycoprotein gB in herpes simplex virus type 1. Journal of Virology 68:500–504
    [Google Scholar]
  39. Mettenleiter T. C., Zsak L., Zuckermann F., Sugg N., Kern H., Ben-Porat T. 1990; Interaction of glycoprotein gill with a cellular heparin-like substance mediates adsorption of pseudorabies virus. Journal of Virology 64:278–286
    [Google Scholar]
  40. Miller M. F. II 1982; Virus particle counting by electron microscopy. In Electron Microscopy in Biology 2 pp 305–339 Griffith J. Edited by New York: John Wiley & Sons;
    [Google Scholar]
  41. Mirda D. P., Navarro D., Paz P., Lee P. L., Pereira L., Williams L. T. 1992; The fibroblast growth factor receptor is not required for herpes simplex virus type 1 infection. Journal of Virology 66:448–457
    [Google Scholar]
  42. Misra V., Blewett E. L. 1991; Construction of herpes simplex viruses that are pseudodiploid for the glycoprotein B gene: a strategy for studying the function of an essential herpesvirus gene. Journal of General Virology 72:385–392
    [Google Scholar]
  43. Morgan C., Rose H. M., Mednis B. 1968; Electron microscopy of herpes simplex virus I entry. Journal of Virology 2:507–516
    [Google Scholar]
  44. Muggeridge M. I., Cohen G. H., Eisenberg R. J. 1992; Herpes simplex virus infection can occur without involvement of the fibroblast growth factor receptor. Journal of Virology 66:824–830
    [Google Scholar]
  45. Okazaki K., Honda E., Minetoma T., Kumagai T. 1986; Mechanisms of neutralization by monoclonal antibodies to different antigenic sites on the bovine herpesvirus type 1 glycoproteins. Virology 150:260–264
    [Google Scholar]
  46. Okazaki K., Matsuzaki T., Sugahara Y., Okada J., Hasebe M., Iwamura Y., Ohnishi M., Kanno T., Shimizu M., Honda E. 1991; BHV-1 adsorption is mediated by the interaction of glycoprotein gill with heparin-like moiety on the cell surface. Virology 181:666–670
    [Google Scholar]
  47. Para M. F., Baucke R. B., Spear P. G. 1980; Immunoglobulin G(Fc)-binding receptors on virions of herpes simplex virus type 1 and transfer of these receptors to the cell surface by infection. Journal of Virology 34:512–520
    [Google Scholar]
  48. Para M. F., Parish M. L., Noble A. G., Spear P. G. 1985; Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. Journal of Virology 55:483–488
    [Google Scholar]
  49. Rapraeger A., Kubota Y., Olwin B. B. 1991; Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708
    [Google Scholar]
  50. Rauh I., Weiland F., Fehler F., Keil G. M., Mettenleiter T. C. 1991; Pseudorabies virus mutants lacking the essential glycoprotein gll can be complemented by glycoprotein gl of bovine herpesvirus 1. Journal of Virology 65:621–631
    [Google Scholar]
  51. Roop C., Hutchinson L., Johnson D. C. 1993; A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. Journal of Virology 67:2285–2297
    [Google Scholar]
  52. Sarmiento M., Haffey M., Spear P. G. 1979; Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7 (B2) in virion infectivity. Journal of Virology 29:1149–1158
    [Google Scholar]
  53. Sawitzky D., Hampl H., Habermehl K.-O. 1990; Comparison of heparin-sensitive attachment of pseudorabies virus (PRV) and herpes simplex virus type 1 and identification of heparin-binding PRV glycoproteins. Journal of General Virology 71:1221–1225
    [Google Scholar]
  54. Schreurs C., Mettenleiter T. C., Zuckermann F., Sugg N., Ben-Porat T. 1988; Glycoprotein gill of pseudorabies virus is multifunctional. Journal of Virology 62:2251–2257
    [Google Scholar]
  55. Sears A. E., Mcgwire B. S., Roizman B. 1991; Infection of polarized MDCK cells with herpes simplex virus 1: two asymmetrically distributed cell receptors interact with different viral proteins. Proceedings of the National Academy of Sciences U.S.A.: 885087–5091
    [Google Scholar]
  56. Shieh M.-T., Spear P. G. 1994; Herpes virus-induced cell fusion that is dependent on cell surface heparan sulfate or soluble heparin. Journal of Virology 68:1224–1228
    [Google Scholar]
  57. Shieh M.-T., Wudunn D., Montgomery R. I., Esko J. D., Spear P. G. 1992; Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. Journal of Cell Biology 116:1273–1281
    [Google Scholar]
  58. Spear P. G. 1993; Entry of alphaherpesviruses into cells. Seminars in Virology 4:167–180
    [Google Scholar]
  59. Stannard L. M., Fuller A. O., Spear P. G. 1987; Herpes simplex virus glycoproteins associated with different morphological entities projecting from the virion envelope. Journal of General Virology 68:715–725
    [Google Scholar]
  60. Svennerholm B., Jeansson S., Vahlne A., Lycke E. 1991; Involvement of glycoprotein C (gC) in adsorption of herpes simplex virus type 1 (HSV-1) to the cell. Archives of Virology 120:273–279
    [Google Scholar]
  61. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets : procedure and some applications. Proceedings of the National Academy of Sciences U.S.A.: 764350–4354
    [Google Scholar]
  62. Vahlne A., Svennerholm B., Lycke E. 1979; Evidence for herpes simplex virus type-selective receptors on cellular plasma membranes. Journal of General Virology 44:217–225
    [Google Scholar]
  63. Vahlne A., Svennerholm B., Sandberg M., Hamberger A., Lycke E. 1980; Differences in attachment between herpes simplex type 1 and type 2 viruses to neurons and glial cells. Infection and Immunity 28:675–680
    [Google Scholar]
  64. Wittels M., Spear P. G. 1991; Penetration of cells by herpes simplex virus does not require a low pH-dependent endocytic pathway. Virus Research 18:271–290
    [Google Scholar]
  65. Wudunn D., Spear P. G. 1989; Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. Journal of Virology 63:52–58
    [Google Scholar]
  66. Zuckermann F., Zsak L., Reilly L., Sugg N., Ben-Porat T. 1989; Early interactions of pseudorabies virus with host cells: functions of glycoprotein gill. Journal of Virology 63:3323–3329
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-6-1211
Loading
/content/journal/jgv/10.1099/0022-1317-75-6-1211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error