The genome of pea enation mosaic virus (PEMV) is composed of two taxonomically unrelated RNAs, interacting to create what has traditionally been considered a bipartite virus. The cohesiveness of this interaction was assessed by examining the autonomy of each RNA in viral replication, coat protein expression and systemic invasion. Using a pea protoplast system, transcripts of RNA1 were found to be capable of initiating RNA2-independent replication, including the formation of the distinctive nuclear membrane-based replication complex associated with wild-type PEMV infection. Western blotting and electron microscopic analysis demonstrated that the synthesis of the RNA1-encoded coat protein, as well as virion assembly, was also independent of RNA2-directed functions. Mechanical inoculations with transcripts of RNA1 failed to establish a systemic RNA1 infection, whereas inoculations with RNA2 were able to establish a largely asymptomatic systemic infection. Combined inoculum containing RNA1 and RNA2 transcripts were able to recreate wild-type PEMV symptomatology, demonstrating the dependence of RNA1 on RNA2 for mechanical passage. With the notable exception of the adaptation of PEMV to establish a true systemic invasion, these data further strengthen the analogy between PEMV and the helper-dependent complexes associated with members of the luteovirus group.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error