1887

Abstract

The genome of pea enation mosaic virus (PEMV) is composed of two taxonomically unrelated RNAs, interacting to create what has traditionally been considered a bipartite virus. The cohesiveness of this interaction was assessed by examining the autonomy of each RNA in viral replication, coat protein expression and systemic invasion. Using a pea protoplast system, transcripts of RNA1 were found to be capable of initiating RNA2-independent replication, including the formation of the distinctive nuclear membrane-based replication complex associated with wild-type PEMV infection. Western blotting and electron microscopic analysis demonstrated that the synthesis of the RNA1-encoded coat protein, as well as virion assembly, was also independent of RNA2-directed functions. Mechanical inoculations with transcripts of RNA1 failed to establish a systemic RNA1 infection, whereas inoculations with RNA2 were able to establish a largely asymptomatic systemic infection. Combined inoculum containing RNA1 and RNA2 transcripts were able to recreate wild-type PEMV symptomatology, demonstrating the dependence of RNA1 on RNA2 for mechanical passage. With the notable exception of the adaptation of PEMV to establish a true systemic invasion, these data further strengthen the analogy between PEMV and the helper-dependent complexes associated with members of the luteovirus group.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-5-997
1994-05-01
2019-11-19
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-5-997
Loading

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error