1887

Abstract

The complete sequence of the spike (S) gene of the Brl/87 isolate of porcine epidemic diarrhoea virus (PEDV) was determined from cDNA clones. The predicted polypeptide was 1383 amino acids long, contained 29 potential -linked glycosylation sites and showed structural features similar to those of the coronavirus spike protein. The PEDV S protein, like that of the members of the transmissible gastroenteritis virus (TGEV)-related subset, lacks a proteolytic site to yield cleaved amino and carboxy subunits S1 and S2. Viral polypeptide species of the expected , i.e. 170K/190K, were observed in PEDV-infected cells. Sequence comparison confirmed that, within the subset, PEDV was most closely related to the human respiratory coronavirus HCV 229E. However, PEDV S protein has an additional 250 residue N-terminal domain which is absent from HCV 229E and porcine respiratory coronavirus, the respiratory variant of TGEV. Alignment of the S1 regions revealed a second domain of about 90 residues with increased sequence divergence which might possibly express virus-specific determinants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-5-1195
1994-05-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/5/JV0750051195.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-5-1195&mimeType=html&fmt=ahah

References

  1. Abraham S., Kienzle T. E., Lapps W., Brian D. A. 1990; Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 176:296–301
    [Google Scholar]
  2. Binns M. M., Boursnell M. E. G., Cavanagh D., Pappin D. J. C., Brown T. D. K. 1985; Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. Journal of General Virology 66:719–726
    [Google Scholar]
  3. Bridgen A., Duarte M., Tobler K., Laude H., Ackermann M. 1993; Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus. Journal of General Virology 74:1795–1804
    [Google Scholar]
  4. Britton P. 1991; Coronavirus motif. Nature, London 353, 394. CAVANAGH, D. (1983). Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. Journal of General Virology 64:1787–1791
    [Google Scholar]
  5. Debouck P., Pensaert M. 1980; Experimental infection of pigs with a new porcine enteric coronavirus, CV 777. American Journal of Veterinary Research 41:219–223
    [Google Scholar]
  6. De Groot R. J., Maduro I., Lenstra J. A., Horzinek M. C., Van Der Zeijst B. A. M., Spaan W. J. M. 1987; cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. Journal of General Virology 68:2639–2646
    [Google Scholar]
  7. Delmas B., Laude H. 1991; Carbohydrate-induced conformational changes strongly modulate the antigenicity of coronavirus TGEV glycoproteins S and M. Virus Research 20:107–120
    [Google Scholar]
  8. Delmas B., Rasschaert D., Godet M., Gelfi I., Laude H. 1990; Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoproteins. Journal of General Virology 71:1313–1323
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Duarte M., Tobler K., Bridgen A, Ackermann M., Laude H. 1993a; Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology 198:466–476
    [Google Scholar]
  11. Duarte M., Gelfi J., Lambert P., Rasschaert D., Laude H. 1993b; Genomic organization of porcine epidemic diarrhea virus (PEDV). In Coronaviruses: Molecular Biology and Virus-Host Interactions pp 55–60 Laude H., Vautherot J. F. V. Edited by New York: Plenum Press;
    [Google Scholar]
  12. Egberink H. F., Ederveen I., Callebaut P., Horzinek M. C. 1988; Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777. American Journal of Veterinary Research 49:1320–1324
    [Google Scholar]
  13. Gebauer F., Posthumus W. P. A., Correa L, Smerdou C., Sanchez C. M., Lenstra J. A., Meloen R. H., Enjuanes L. 1991; Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology 183:225–238
    [Google Scholar]
  14. Grosse B., Siddell S. G. 1993; Workshop W8-3. Analysis of the coronavirus MHV surface glycoprotein using monoclonal antibody resistant (MAR) variants IXth International Congress of Virology; Glasgow, Scotland:
    [Google Scholar]
  15. Horsburgh B. C., Brierley I., Brown T. D. K. 1992; Analysis of a 9·6 kb sequence from the 3′ end of canine coronavirus genomic RNA. Journal of General Virology 73:2849–2862
    [Google Scholar]
  16. Jacobs L., De Groot R., Van Der Zeijst V. A. M., Horzinek M. C., Spaan W. 1987; The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV). Virus Research 8:363–371
    [Google Scholar]
  17. Knuchel M., Ackermann M., Müller H. K., Kuhm U. 1992; An ELISA for detection of antibodies against porcine epidemic diarrhoea virus (PEDV) based on the specific solubility of the viral surface glycoprotein. Veterinary Microbiology 32:117–134
    [Google Scholar]
  18. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  19. Lai M. M. C. 1990; Coronavirus: organization, replication and expression of genome. Annual Review of Microbiology 44:303–333
    [Google Scholar]
  20. Laude H., Van Reeth K., Pensaert M. 1993; Porcine respiratory coronavirus: molecular features and virus-host interactions. Veterinary Research 24:125–150
    [Google Scholar]
  21. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., Van Der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  22. Parker S. E., Gallagher T. M., Buchmeier M. J. 1989; Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology 173:664–673
    [Google Scholar]
  23. Pensaert M. B. 1986; Porcine epidemic diarrhea. In Diseases of Swine, 6th edn. pp 402–406 Leman A. D., Straw B., Glock R. D., Mengeling W. L., Penny R. H. C., Scholl E. Edited by Ames: Iowa State University Press;
    [Google Scholar]
  24. Raabe T., Schelle-Prinz B., Siddell S. G. 1990; Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. Journal of General Virology 71:1065–1073
    [Google Scholar]
  25. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  26. Rasschaert D., Duarte M., Laude H. 1990; Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. Journal of General Virology 71:2599–2607
    [Google Scholar]
  27. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  28. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-5-1195
Loading
/content/journal/jgv/10.1099/0022-1317-75-5-1195
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error