1887

Abstract

A secreted form of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp160s), expressed in HeLa cells from a vaccinia virus recombinant was analysed by velocity-gradient centrifugation and chemical cross-linking. We showed that gp160s existed predominantly as a dimer, but higher forms corresponding to trimers and tetramers were also found. Soluble CD4 (sCD4) and native CD4 expressed by recombinant vaccinia viruses were analysed by sucrose- gradient sedimentation alone or after complexing with gp160s. The sCD4 sedimented in sucrose gradients as a monomer, whereas after solubilization the native CD4 was in a dimeric state. Both forms of CD4 were able to form complexes when incubated with gp160s. In the case of the sCD4, the corresponded to a (sCD4)- (gp160s) complex, whereas with CD4 the complexes were of a greater order of magnitude. HIV gpl20 was secreted into the medium in a monomeric state. With sCD4 it gave a one-to-one complex, whereas with the native CD4 high complexes were formed. The importance of the oligomeric state of the virus- and cell-receptor proteins are discussed regarding their avidities.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-4-839
1994-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/4/JV0750040839.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-4-839&mimeType=html&fmt=ahah

References

  1. Ashorn P. A., Berger E. A., Moss B. 1990; Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion on nonprimate cells with human cells. Journal of Virology 64:2149–2156
    [Google Scholar]
  2. Bedinger P., Moriarty A., VonBorstel R. C. II Donovan N. J., Stbimer K. S., Littman D. R. 1988; Internalization of the human immunodeficiency virus does not require the cytoplasmic domain of CD4. Nature; London: 334162–165
    [Google Scholar]
  3. Bour S., Boulerice F., Wainberg M. A. 1991; Inhibition of gpl60 and CD4 maturation in U937 cells after both defective and productive infections by human immunodeficiency virus type 1. Journal of Virology 65:6387–6396
    [Google Scholar]
  4. Camerini D., Seed B. 1990; A CD4 domain important for HIV- mediated syncytium formation lies outside the virus binding site. Cell 60:747–754
    [Google Scholar]
  5. Celada F., Cambiaggi C., Maccari J., Burastero S., Gregory T., Patzer E., Porter J., McDanal C., Matthews T. 1990; Antibody raised against soluble CD4-rgpl20 complex recognizes the CD4 moiety and blocks membrane fusion without inhibiting CD4- gpl20 binding. Journal of Experimental Medicine 172:1143–1150
    [Google Scholar]
  6. Daar E. S., Li X. L., Moudgil T., Ho D. D. 1990; High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proceedings of the National Academy of Sciences U.S.A.: 876574–6578
    [Google Scholar]
  7. Deen K. C., Mcdougal J. S., Inacker R., Folena-Wasserman G., Arthos J., Rosenberg J., Maddon P. J., Axel R., Sweet R. W. 1988; A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature; London: 33182–84
    [Google Scholar]
  8. De Vos A. M., Ultsch M., Kossiakoff A. A. 1992; Human growth hormone and the extracellular domain of its receptor: crystal structure of the complex. Science 255:306–312
    [Google Scholar]
  9. Earl P. L., Doms R. W., Moss B. 1990; Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proceedings of the National Academy of Sciences U.S.A.: 87648–652
    [Google Scholar]
  10. Earl P. L., Doms R. W., Moss B. 1992; Multimeric CD4 binding exhibited by human and simian immunodeficiency virus envelope protein dimers. Journal of Virology 66:5610–5614
    [Google Scholar]
  11. Fisher R. A., Bertonis J. M., Meier W., Johnson V. A., Costo-Poulos D. S., Liu T., Tizard R., Walker B. D., Hirsch M. S., Schooley R. T., Flavell R. A. 1988; HIV infection is blocked in vitro by recombinant soluble CD4. Nature; London: 33176–78
    [Google Scholar]
  12. Gullick W. J., Bottomley A. C., Lofts F. J., Mulvey D., Newman R., Crumpton M. J., Sternberg M. J. E., Campbell I. D. 1992; Three dimensional structure of the transmembrane region of the proto-oncogenic and oncogenic forms of the neu protein. EMBO Journal 11:43–48
    [Google Scholar]
  13. Hallenberger S., Tucker S. P., Owens R. J., Bernstein H. B., Compans R. W. 1993; Secretion of a truncated form of the human immunodeficiency virus type 1 envelope glycoprotein. Virology 193:510–514
    [Google Scholar]
  14. Hawrylak K., Stinson R. A. 1988; The solubilization of tetrameric alkaline phosphatase from human liver and its conversion into various forms by phosphatidylmositol phospholipase C or proteolysis. Journal of Biological Chemistry 263:14368–14373
    [Google Scholar]
  15. Healey D., Dianda L., Moore J. P., Mcdougal J. S., Moore M. J., Estess P., Buck D., Kwong P. D., Beverley P. C. L., Sattentau Q. J. 1990; Novel anti-CD4 monoclonal antibodies separate human immunodeficiency virus infection and fusion of CD4+ cells from virus binding. Journal of Experimental Medicine 172:1233–1242
    [Google Scholar]
  16. Hussey R. E., Richardson N. E., Kowalski M., Brown N. R., Chang H.-C., Siliciano R. F., Dorfman T., Walker B., Sodroski J., Reinherz E. L. 1988; A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature; London: 33178–81
    [Google Scholar]
  17. Jasin M., Page K. A., Littman D. R. 1991; Glycosyl- phosphatidylmositol-anchored CD4/Thy-1 chimeric molecules serve as human immunodeficiency virus receptors in human, but not mouse, cells and are modulated by gangliosides. Journal of Virology 65:440–444
    [Google Scholar]
  18. Kawamura I., Koga Y., Oh-Hori N., Onodera K., Kimura G., Nomoto K. 1989; Depletion of the surface CD4 molecule by the envelope protein of human immunodeficiency virus expressed in a human CD4+monocytoid cell line. Journal of Virology 63:3748–3754
    [Google Scholar]
  19. Kieny M. P., Lathe R., Riviere Y., Dott K., Schmitt D., Girard M., Montagnier L., Lecocq J.-P. 1988; Improved antigenicity of the HIV env protein by cleavage site removal. Protein Engineering 2:219–225
    [Google Scholar]
  20. Koga Y., Sasaki M., Nakamura K., Kimura G., Nomoto K. 1990; Intracellular distribution of the envelope glycoprotein of human immunodeficiency virus and its role in the production of cytopathic effect in CD4+ and CD4~ human cell lines. Journal of Virology 64:4661–4671
    [Google Scholar]
  21. Kost T. A., Kessler J. A., Indravadan R. P., Gray J. G., Overton L. K., Carter S. G. 1991; Human immunodeficiency virus infection and syncytium formation in HeLa cells expressing glycophospholipid-anchored CD4. Journal of Virology 65:3276–3283
    [Google Scholar]
  22. Kwong P. D., Ryu S.-E., Hendrickson W., Axel R., Folena-Wasserman G., Hensley P., Sweet R. W. 1991; Molecular characteristics of recombinant human CD4 as deduced from polymorphic crystals. Proceedings of the National Academy of Sciences U.S.A.: 876423–6427
    [Google Scholar]
  23. Laemmli UK. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  24. Langedijk J. P. M., Wouter C. P., Van Hoorn W. P., Meloen R. H. 1993; Location of CD4 dimerization site explains critical role of CDR3-like region in HIV-1 infection and T-cell activation and implies a model for complex of coreceptor-MHC. Journal of Biological Chemistry 268:16875–16878
    [Google Scholar]
  25. Layne S. P., Merges M. J., Dembo M. B., Spouge J. L., Nara P. L. 1990; HIV requires multiple gpl20 molecules for CD4- mediated infection. Nature; London: 346277–279
    [Google Scholar]
  26. Marshall W. L., Diamond D. C., Kowalski M. M., Finberg R. W. 1992; High level of surface CD4 prevents stable human immunodeficiency virus infection of T-cell transfectants. Journal of Virology 66:5492–5499
    [Google Scholar]
  27. Moore J. P., Mckeating J. A., Weiss R. A., Sattentau Q. J. 1990; Dissociation of gpl20 from HIV-1 virions induced by soluble CD4. Science 250:1130–1142
    [Google Scholar]
  28. Moore J. P., Mckeating J. A., Huang Y., Ashkenazi A., Ho D. D. 1992; Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gpl20 retention from sCD4- sensitive isolates. Journal of Virology 66:235–243
    [Google Scholar]
  29. Moore J. P., Jameson B. A., Weiss R. A., Sattentau Q. J. 1993; The HIV-cell fusion reaction. In Viral Fusion Mechanisms pp 233–289 Bentz J. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  30. Pascale M. C., Erra M. C., Malagolini N., Serafini-Cessi F., Leone A., Bonati S. 1992; Post-translational processing of an O-glycosylated protein, the human CD8 glycoprotein, during the intracellular transport to the plasma membrane. Journal of Biological Chemistry 267:25196–25201
    [Google Scholar]
  31. Pinter A., Honnen W. J., Tilley S. A., Bona C., Zaghouani H., Gorny M. K., Zolla-Pazner S. 1989; Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. Journal of Virology 63:2674–2679
    [Google Scholar]
  32. Ryu S.-E., Kwong P. D., Truneh A., Porter T. G., Arthos J., Rosenberg M., Dai X., Xuong N., Axel R., Sweet R. W., Hendrickson W. A. 1991; Crystal structure of an HIV-bindmg recombinant fragment of human CD4. Nature; London: 348418–426
    [Google Scholar]
  33. Schawaller M., Smith G. E., Skehbl J. J., Wiley D. C. 1989; Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV. Virology 172:367–369
    [Google Scholar]
  34. Sweet R. W., Truneh A., Hendrickson W. A. 1991; CD4: its structure, role in immune function and AIDS pathogenesis, and potential as pharmacological target. Current Opinion in Biotechnology 2:622–633
    [Google Scholar]
  35. Thomas D. J., Wall J. S., Hainfeld J. F., Kaczorek M., Booy F. P., Trus B. L., Eiserling F. A. 1991; Gpl60, the envelope glycoprotein of human immunodeficiency virus type 1, is a dimer of 125-kilodalton subunits stabilized through interactions between their gp41 domains. Journal of Virology 65:3797–3803
    [Google Scholar]
  36. Ullrich A., Schlesinger J. 1990; Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212
    [Google Scholar]
  37. Vaishnav Y. N., Wong-Staal F. 1991; The biochemistry of AIDS. Annual Review of Biochemistry 60:577–630
    [Google Scholar]
  38. Weiss C. D., Levy J. A., White J. M. 1990; Oligomeric organization of gpl20 on infectious human immunodeficiency virus type 1 particles. Journal of Virology 64:5674–5677
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-4-839
Loading
/content/journal/jgv/10.1099/0022-1317-75-4-839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error