1887

Abstract

In addition to major proteins of 19K and 55K (176 and 496 residues, 176R and 496R, respectively), early region 1B (E1B) of human adenovirus type 5 (Ad5) is predicted to encode at least three other polypeptides of 156R, 93R and 84R that share 79 amino-terminal residues with 496R. We have used a series of specific antipeptide sera to identify and partially characterize these proteins. 84R was produced in large amounts, 156R somewhat less, and 93R at very low levels. Synthesis of 176R, 496R, as well as the E2A 72K DNA-binding protein commenced shortly after that of E1A proteins in Ad5-infected KB cells. Production of 156R, 93R and 84R began somewhat later, but prior to the synthesis of the late structural protein IX and hexon. 156R, which is composed of the 79 amino-terminal and 77 carboxy-terminal amino acids of 496R, migrated on SDS-PAGE as two species which appeared to differ by their degree of phosphorylation. 156R and 496R yielded identical tryptic phosphopeptides that contained both phosphoserine and phosphothreonine, and one of these was immunoprecipitated by a serum specific for the carboxy terminus. These results suggested that Ser-490 and/or Ser-491 as well as Thr-495 are major sites of phosphorylation in these proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-4-789
1994-04-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/4/JV0750040789.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-4-789&mimeType=html&fmt=ahah

References

  1. Anderson C. W., Schmitt R. C., Smart J. E., Lewis J. B. 1984; Early region 1B of adenovirus 2 encodes two coterminal proteins of 495 and 155 amino acid residues. Journal of Virology 50:387–396
    [Google Scholar]
  2. Babiss L. E., Ginsberg H. G. 1984; Adenovirus type 5 early region lb gene product is required for efficient shutoff of host protein synthesis. Journal of Virology 50:202–212
    [Google Scholar]
  3. Babiss L. E., Ginsberg H. G., Darnell J. E. Jr 1985; Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Molecular and Cellular Biology 5:2552–2558
    [Google Scholar]
  4. Barker D. D., Berk A. J. 1987; Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156:107–121
    [Google Scholar]
  5. Bernards R., Deleeuw M. G. W., Houweling A., Van Der Eb A. J. 1986; Role of the adenovirus early region IB tumor antigens in transformation and lytic infection. Virology 150:126–139
    [Google Scholar]
  6. Bos J. L., Polder L. J., Bernards R., Schrier P. I., Van Den Elsen P. J., Van Der Eb A. J., Van Ormondt H. 1981; The 2·2 kb Elb mRNA of human Ad 12 and Ad5 codes for two tumor antigens starting at different AUG triplets. Cel! 27:121–131
    [Google Scholar]
  7. Branton P. E., Bayley S. T., Graham F. L. 1985a; Transformation by human adenoviruses. Biochimica et biophysica acta 780:67–94
    [Google Scholar]
  8. Branton P. E., Evelegh M., Rowe D. T., Graham F. L., Bacchetti S. 1985b; Protein kinase and ATP binding activity associated with the 72,000 dalton single-stranded DNA binding protein from early region 2A of human adenovirus type 5. Canadian Journal of Biochemistry and Cell Biology 63:941–952
    [Google Scholar]
  9. Breiding D. E., Edbauer C. A., Tong J. Y., Byrd P., Grand R. J., Gallimore P. H., Williams J. 1988; Isolation and characterization of adenovirus type 12 El host-range mutants defective for growth in nontransformed human cells. Virology 164:390–402
    [Google Scholar]
  10. Bridge E., Ketner G. 1990; Interaction of adenoviral E4 and Elb products in late gene expression. Virology 174:345–353
    [Google Scholar]
  11. Dumont D. J., Branton P. E. 1992; Phosphorylation of adenovirus E1A proteins by the p34cdc2 protein kinase. Virology 189:111–120
    [Google Scholar]
  12. Dumont D. J., Tremblay M. L., Branton P. E. 1989; Phosphorylation at serine-89 induces a shift in gel mobility but has little effect on function of adenovirus type 5 E1A proteins. Journal of Virology 63:987–991
    [Google Scholar]
  13. Gingeras T. R., Sciaky D., Gelinas R. E., Bing-Dong J., Yen C. E., Kelley M. M., Bullock P. A., Parsons B. L., O’Neill K. E., Roberts R. J. 1982; Nucleotide sequences from the adenovirus-2 DNA. Journal of Biological Chemistry 257:13475–13491
    [Google Scholar]
  14. Graham F. L., Smiley J., Russell W. C., Nairn R. 1977; .Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36:59–72
    [Google Scholar]
  15. Green M., Brackmann K. H., Cartas M. A., Matsuo T. 1982; Identification and purification of a protein encoded by the human adenovirus type 2 transforming region. Journal of Virology 42:30–41
    [Google Scholar]
  16. Halbert D. N., Cutt J. R., Shenk T. 1985; Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. Journal of Virology 56:250–257
    [Google Scholar]
  17. Harlow E., Franza B. R.Jr Schley T. 1985; Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. Journal of Virology 55:533–546
    [Google Scholar]
  18. Horeitz M. S. 1990; Adenoviridae and their replication. In Virology, 2nd edn.. pp 1679–1721 Fields B. N., Knipe D. M. Edited by New York: Raven Press;
    [Google Scholar]
  19. Jones N., Shenk T. 1979; Isolation of adenovirus type 5 host-range deletion mutants defective for transformation of rat embryo cells. Cell 17:683–689
    [Google Scholar]
  20. Kao C. C., Yew P. R., Berk A. J. 1990; Domains required for in vitro association between cellular p53 and the adenovirus 2 E1B 55K protein. Virology 179:806–814
    [Google Scholar]
  21. Leppard K. N., Shenk T. 1989; The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO Journal 8:2329–2336
    [Google Scholar]
  22. Lewis J. B., Anderson C. W. 1987; Identification of adenovirus type 2 early region IB proteins that share the same amino terminus as do the495Rand 155R proteins. Journal of Virology 61:3879–3888
    [Google Scholar]
  23. Logan J., Pilder S., Shenk T. 1984; Functional analysis of adenovirus type 5 early region IB. Cancer Cells 2:527–531
    [Google Scholar]
  24. Lucher L. A., Brackman K. H., Symington J. S., Green M. 1984; Antibody directed to a synthetic peptide encoding the NH2- terminal 16 amino acids of the adenovirus type 2-53K tumor antigen recognizes the E1B-20K tumor antigen. Virology 132:217–221
    [Google Scholar]
  25. Mcglade C. J., Tremblay M. L., Yee S.-P., Ross R., Branton P. E. 1987; Acylation of the 176R (19-kilodalton) early region IB protein of human adenovirus type 5. Journal of Virology 61:3227–3234
    [Google Scholar]
  26. Mcglade C. J., Tremblay M. L., Branton P. E. 1989; Mapping of a phosphorylation site in the 176R (19 kDa) early region IB protein of human adenovirus type 5. Virology 168:119–127
    [Google Scholar]
  27. McLorie W., McGlade C. J., Takayesu D., Branton P. E. 1991; Individual adenovirus E1B proteins induce transformation independently but by additive pathways. Journal of General Virology 72:1467–1471
    [Google Scholar]
  28. Mak I., Mak S. 1990; Separate regions of an adenovirus E1B protein critical for different biological functions. Virology 176:553–562
    [Google Scholar]
  29. Malette P., Yee S.-P., Branton P. E. 1983; Studies on the phosphorylation of the 58000 dalton early region IB protein of human adenovirus type 5. Journal of General Virology 64:1069–1078
    [Google Scholar]
  30. Montell C., Fisher E. F., Caruthers M. H., Berk A.J. 1984; Control of adenovirus E1B mRNA synthesis by a shift in the activities of RNA splice sites. Molecular and Cellular Biology 4:966–977
    [Google Scholar]
  31. Pearson R. B., Kemp B. E. 1991; Protein kinase phosphorylation site sequences and consensus specificity motifs. Methods in Enzvm-ology 201:110–149
    [Google Scholar]
  32. Perricaudet M., Akusjarvi G., Virtanen A., Pettersson U. 1979; Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature; London: 281694–696
    [Google Scholar]
  33. Pilder S., Moore M., Logan J., Shenk T. 1986; The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Molecular and Cellular Biology 6:470–476
    [Google Scholar]
  34. Rao L., Debbas M., Sabbatini P., Hockenbery D., Korsmeyer S., White E. 1992; The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and bcl-2 proteins. Proceedings of the National Academy oj Sciences U.S.A.: 897742–7746
    [Google Scholar]
  35. Rowe D. T., Graham F. L., Branton P. E. 1983; Intracellular localization of adenovirus type 5 tumor antigens in productively infected cells. Virology 129:456–468
    [Google Scholar]
  36. Sandler A. B., Ketner G. 1989; Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. Journal of Virology 63:624–630
    [Google Scholar]
  37. Sarnow P., Sullivan C. A., Levine A. S. 1982a; A monoclonal antibody detecting the adenovirus type 5 Elb-58 Kd tumor antigen: characterization of the Elb-58 Kd tumor antigen in adenovirus- infected and -transformed cells. Virology 120:510–517
    [Google Scholar]
  38. Sarnow P., Ho Y. S., Williams J., Levine A. J. 1982b; Adenovirus Elb-58Kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54Kd cellular protein in transformed cells. Cell 28:387–394
    [Google Scholar]
  39. Shiroki K., Ohshima K., Fukui Y., Ariga H. 1986; THE adenovirus type 12 early-region IB 58,000-Mr gene product is required for viral DNA synthesis and for initiation of cell transformation. Journal of Virology 57:792–801
    [Google Scholar]
  40. Tremblay M. L., Mcglade C. J., Gerber G. E., Branton P. E. 1988; Identification of the phosphorylation sites in the early region 1A proteins of adenovirus type 5 by analysis of proteolytic peptides and amino acid sequencing. Journal of Biological Chemistry 263:6375–6383
    [Google Scholar]
  41. Tremblay M. L., Dumont D. J., Branton P. E. 1989; Analysis of phosphorylation sites in the exon 1 region of E1A proteins of human adenovirus type 5. Virology 169:397–407
    [Google Scholar]
  42. Virtanen A., Pettersson U. 1985; Organization of early region IB of human adenovirus type 2: identification of four differentially spliced mRNAs. Journal of Virology 54:383–391
    [Google Scholar]
  43. White E., Cipriani R. 1990; Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Molecular and Cellular Biology 10:120–130
    [Google Scholar]
  44. White E., Sabbatini P., Debbas M., Wold W. S. M., Kusher D., Gooding L. R. 1992; The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor α. Molecular and Cellular Biology 12:2570–2580
    [Google Scholar]
  45. Yeb S.-P., Rowe D. T., Tremblay M. L., Mcdermott M., Branton P. E. 1983; Identification of human adenovirus early region 1 products using antisera against synthetic peptides corresponding to the predicted carboxy termini. Journal of Virology 46:1003–1013
    [Google Scholar]
  46. Yew P. R., Berk A. J. 1992; Inhibition of p53 transactivation required for transformation by adenovirus early region IB protein. Nature; London: 35782–85
    [Google Scholar]
  47. Yew P. R., Kao C. C., Berk A. J. 1990; Dissection of functional domains in the adenovirus 2 early IB 55K polypeptide by suppressor- linker insertional mutagenesis. Virology 179:795–805
    [Google Scholar]
  48. Zhang S., Mak S., Branton P.E. 1992; Overexpression of the E1B 55-kilodalton (482R) protein of human adenovirus type 12 appears to permit efficient transformation of primary baby rat kidney cells in the absence of the E1B 19-kilodalton protein. Journal of Virology 66:2302–2309
    [Google Scholar]
  49. Zhang S., Mak S., Branton P. E. 1993; Adenovirus type 12 early region IB proteins and metabolism of early viral mRNAs. Virology 191:793–802
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-75-4-789
Loading
/content/journal/jgv/10.1099/0022-1317-75-4-789
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error