1887

Abstract

The amino acid residues critical for interaction between herpes simplex virus type 1 (HSV-1) glycoprotein C (gC- 1) and cell surface heparan sulphate (HS) were localized to two separate regions within antigenic site II of this glycoprotein. These amino acids were Arg-143, Arg-145, Arg-147 and Thr-150 in one region and Gly-247 in the other. This conclusion is based on the following observations, (i) Monoclonal antibodies defining gC-1 antigenic site II, and not those reactive with antigenic site I, inhibited HSV-1-induced haemagglutination and virus binding to susceptible cells, (ii) A number of HSV- 1 mutants, altered at these critical residues, were impaired in attachment to cells, (iii) Synthetic peptides, corresponding to these two regions inhibited virus attachment to cells and infectivity. In addition these peptides were found to agglutinate red blood cells. This agglutination was inhibited by soluble HS, and was prevented by the pretreatment of red blood cells with heparitinase suggesting that cell surface HS was a site of peptide binding. The same was observed with the polycationic substances neomycin and poly--lysine. In conclusion, we propose that the regions of gC-1 represented by the HS-binding peptides may form a functional site of a polycationic nature, active in attachment to the polyanionic glycosaminoglycan chain of cell surface HS.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-4-743
1994-04-01
2022-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/4/JV0750040743.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-4-743&mimeType=html&fmt=ahah

References

  1. Baines J. D., Roizman B. 1993; The UL 10 gene of herpes simplex virus 1 encodes a novel viral glycoprotein, gM, which is present in the virion and in the plasma membrane of infected cells. Journal of Virology 67:1441–1452
    [Google Scholar]
  2. Bergström T., Sjogren-Jansson E., Jeansson S., Lycke E. 1992; Mapping neuroinvasiveness of the herpes simplex virus type 1 encephalitis-inducing strain 2762 by the use of monoclonal antibodies. Molecular and Cellular Probes 6:41–49
    [Google Scholar]
  3. Bergström T., Trybala E., Gustafsson A., Olofsson S. 1993; Identification of (V-linked glycan of importance for the function of a domain involved in binding of HSV-1 glycoprotein C to cellular heparan sulphate. ESF Workshop: Maturation and Entry Processes of Membrane Viruses, Stockholm Abstract P-20 p 15
    [Google Scholar]
  4. Campadelli-Fiume G., Stripe D., Boscaro A., Avitabile E., Foa-Tomasi L., Barker D., Roizman B. 1990; Glycoprotein C- dependent attachment of herpes simplex virus to susceptible cells leading to productive infection. Virology 178:213–222
    [Google Scholar]
  5. Ejercito P. M., Kieff E. D., Roizman B. 1968; Characterization of herpes simplex virus strains differing in their effect on social behaviour of infected cells. Journal of General Virology 2:357–364
    [Google Scholar]
  6. Fitzpatrick D. R., Babiuk L. A., Zamb T. J. 1989; Nucleotide sequence of bovine herpesvirus type 1 glycoprotein gill, a structural model for gill as a new member of the immunoglobulin superfamily, and implications for the homologous glycoproteins of other herpesviruses. Virology 173:46–57
    [Google Scholar]
  7. Flynn S. J., Burgett B. L., Stein D. S., Wilkinson K. S., Ryan P. 1993; The amino-terminal one-third of pseudorabies virus glycoprotein gill contains a functional attachment domain, but this domain is not required for the efficient penetration of Vero cells. Journal of Virology 67:2646–2654
    [Google Scholar]
  8. Friedman H. M., Cohen G. H., Eisenberg R. J., Seidel C. A., Cines D. B. 1984; Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on the surface of infected cells. Nature; London: 309633–635
    [Google Scholar]
  9. Friedman H. M., Glorioso J. C., Cohen G. H., Hastings J. C., Harris S. L., Eisenberg R. J. 1986; Binding of complement component C3b to glycoprotein C of herpes simplex virus: mapping of gC-binding sites and demonstration of conserved C3b binding in low passage clinical isolates. Journal of Virology 60:470–475
    [Google Scholar]
  10. Frink R.J, Eisenberg R. J., Cohen G., Wagner E. K. 1983; Detailed analysis of the portion of herpes simplex virus genome encoding glycoprotein C. Journal of Virology 45:634–647
    [Google Scholar]
  11. Fuller A. O., Lee W. 1992; Herpes simplex virus type 1 entry through a cascade of virus-cell interactions requires different roles of gD and gH in penetration. Journal of Virology 66:5002–5012
    [Google Scholar]
  12. Fuller A. O., Spear P. G. 1985; Specificities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. Journal of Virology 55:475–482
    [Google Scholar]
  13. Guo N.-H., Krutzsch H. C., Negre E., Vogel T., Blake T. A., Roberts D. D. 1992; Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion. Proceedings of the National Academy of Sciences U.S.A.: 893040–3044
    [Google Scholar]
  14. Herold B. C., WuDunn D., Soltys N., Spear P. G. 1991; Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. Journal of Virology 65:1090–1098
    [Google Scholar]
  15. Holland T. C., Homa F. L., Marlin S. D., Levine M., Glorioso J. 1984; Herpes simplex virus type 1 glycoprotein C-negative mutants exhibit multiple phenotypes, including secretion of truncated glycoproteins. Journal of Virology 52:566–574
    [Google Scholar]
  16. Holland T. C., Marlin S. D., Levine M., Glorioso J. 1983a; Antigenic variants of herpes simplex virus selected with glycoprotein- specific monoclonal antibodies. Journal of Virology 45:672–682
    [Google Scholar]
  17. Holland T. C., Sandri-Goldin R. M., Holland L. E., Marlin S. D., Levine M., Glorioso J. 1983b; Physical mapping of the mutations in antigenic variant of herpes simplex virus type 1 by use of an immunoreactive plaque assay. Journal of Virology 46:649–652
    [Google Scholar]
  18. Hung S.-L., Srinivasan S., Friedman H. M., Eisenberg R. J., Cohen G. H. 1992; Structural basis of C3b binding by glycoprotein C of herpes simplex virus. Journal of Virology 66:4013–1027
    [Google Scholar]
  19. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A. C., Johnson D. C. 1992a; A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. Journal of Virology 66:2240–2250
    [Google Scholar]
  20. Hutchinson L., Goldsmith K., Snoddy D., Ghosh H., Graham F. L., Johnson D. C. 1992b; Identification and characterization of a novel herpes simplex virus glycoprotein, gK, involved in cell fusion. Journal of Virology 66:5603–5609
    [Google Scholar]
  21. Jackson R. L., Busch S. J., Cardin A. D. 1991; Glycosamino- glycans: molecular properties, protein interactions, and role in physiological processes. Physiological Reviews 71:481–539
    [Google Scholar]
  22. Kikuchi G. E., Coligan J. E., Holland T. C., Levine M., Glorioso J. C., Nairn R. 1984; Biochemical characterization of peptides from herpes simplex virus glycoprotein C: loss of CNBr fragments from the carboxy terminus of truncated, secreted gC molecules. Journal of Virology 52:806–815
    [Google Scholar]
  23. Langeland N., Holmsen H., Lillehaug J. R., Haarr L. 1987; Evidence that neomycin inhibits binding of herpes simplex virus type 1 to the cellular receptor. Journal of Virology 61:3388–3393
    [Google Scholar]
  24. Langeland N., Moore L. J., Holmsen H., Haarr L. 1988; Interaction of polylysine with the cellular receptor for herpes simplex virus type 1. Journal of General Virology 69:1137–1145
    [Google Scholar]
  25. Langeland N., Oyan A. M., Marsden H. S., Cross A., Glorioso J. C., Moore L. J., Haarr L. 1990; Localization on the herpes simplex virus type 1 genome of a region encoding proteins involved in adsorption to cellular receptor. Journal of Virology 64:1271–1277
    [Google Scholar]
  26. Liang X., Babiuk L. A., Zamb T. J. 1993; Mapping of heparinbinding structures on bovine herpesvirus 1 and pseudorabies virus gill glycoproteins. Virology 194:233–243
    [Google Scholar]
  27. Marlin S. D., Holland T. C., Levine M., Glorioso J. C. 1985; Epitopes of herpes simplex virus type 1 glycoprotein gC are clustered in two distinct antigenic sites. Journal of Virology 53:128–136
    [Google Scholar]
  28. Nilheden E., Jeansson S., Vahlne A. 1983; Typing of herpes simplex virus by an enzyme-linked immunoassay with monoclonal antibodies. Journal of Clinical Microbiology 17:677–680
    [Google Scholar]
  29. Olofsson S., Sjöblom I., Lundström M., Jeansson S., Lycke E. 1983; Glycoprotein C of herpes simplex virus type 1: characterization of O-linked oligosaccharides. Journal of General Virology 64:2735–2747
    [Google Scholar]
  30. Robbins A. K., Watson R. J., Whealy M. E., Hays W. W., Enquist L. W. 1986; Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and 2 glycoprotein C. Journal of Virology 58:339–347
    [Google Scholar]
  31. Roizman B., Sears A. 1990; Herpes simplex viruses and their replication. In Virology, 2nd edn.. pp 1795–1841 Fields B. N., Knipe D. M. Edited by New York: Raven Press;
    [Google Scholar]
  32. Shieh M. T., WuDunn D., Montgomery R. I., Esko J. D., Spear P. G. 1992; Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. Journal of Cell Biology 116:1273–1281
    [Google Scholar]
  33. Sjöblom I., Glorioso J. C., Sjogren-Jansson E., Olofsson S. 1992; Antigenic structure of the herpes simplex virus type 1 glycoprotein gC: demonstration of a linear epitope situated in an environment of highly conformation-dependent epitopes. Acta Pathologica, Microbiologica el Immunologica Scandinavica 100:229–236
    [Google Scholar]
  34. Sjögren-Jansson E., Jeansson S. 1985; Large-scale production of monoclonal antibodies in dialysis tubing. Journal of Immunological Methods 84:359–364
    [Google Scholar]
  35. Svennerholm B., Jeansson S., Vahlne A., Lycke E. 1991; Involvement of glycoprotein C (gC) in adsorption of herpes simplex virus type 1 (HSV-1) to the cell. Archives of Virology 120:273–279
    [Google Scholar]
  36. Svennerholm B., Vahlne A., Jeansson S., Lunden R., Olofsson S., Svantesson G., Lycke E. 1980; Separation of herpes simplex virus virions and nucleocapsids on Percoll gradient. Journal of Virological Methods 1:303–309
    [Google Scholar]
  37. Trybala E., Larski Z., Wisniewski J. 1990; Hemagglutination by herpes simplex virus type 1. Archives of Virology 113:89–94
    [Google Scholar]
  38. Trybala E., Svennerholm B., Bergström T., Olofsson S., Jeansson S., Goodman J. L. 1993; Herpes simplex virus type 1- induced hemagglutination: glycoprotein C mediates virus binding to erythrocyte surface heparan sulfate. Journal of Virology 67:1278–1285
    [Google Scholar]
  39. Wu C.-T. B., Levine M., Homa F., Highlander S. L., Glorioso J. C. 1990; Characterization of the antigenic structure of herpes simplex virus type 1 glycoprotein C through DNA sequence analysis of monoclonal antibody resistant mutants. Journal of Virology 64:856–863
    [Google Scholar]
  40. WuDunn D., Spear P. G. 1989; Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. Journal of Virology 63:52–58
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-4-743
Loading
/content/journal/jgv/10.1099/0022-1317-75-4-743
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error