Structural proteins and DNA characteristics of 14 typing bacteriophages Free

Abstract

The major structural proteins of 13 temperate and one virulent typing bacteriophages were analysed and compared using isoelectric focusing in immobilized pH gradients (IPG), ultrathin-layer two-dimensional electrophoresis, amino acid analysis and N-terminal amino acid sequences of selected proteins. Isoelectric points for major capsid and tail proteins of the 12 members of the siphoviridae family included in this study ranged from 4·70 to 5·92, whereas one of the two myoviridae investigated (B054) showed structural proteins in the 6·1 to 6·3 range. In comparison to protein profiles from one-dimensional SDS gels, the IPG technique gave better resolution and improved discrimination of phage proteins. Combination of this technique and SDS gel electrophoresis made it possible to correlate and isoelectric points of major structural proteins. Tail polypeptides of all siphoviridae are smaller and, with one exception, more acidic than their corresponding capsid counterparts. We also determined the amino acid composition of capsid and tail proteins. When compared with an average protein, they were found to be fairly rich in acidic and short-chain hydrophobic amino acids, as well as in lysine. In addition, the N-terminal amino acid sequences of major capsid and tail proteins of four representative listeria- phages were compared. The base composition of listeriaphage DNAs was between 37 % and 39 % G + C, reflecting that of their bacterial hosts. Each phage had a distinct restriction endonuclease pattern, and genome sizes ranged from 35 to 116 kb. DNA-DNA hybridization permitted the identification of five DNA homology groups. The two myoviruses studied (A511 and B054) showed no DNA homology to other phages, confirming their unique nature. The 12 siphoviruses were classified into three DNA homology groups with little cross-homology. Furthermore, phage A006 was found to share little DNA homology with the other investigated members of species 2671. Therefore, a new species (A006) is proposed. With respect to phage classification and taxonomy, a good correlation between the various approaches was observed, mostly corresponding to particle morphology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-4-701
1994-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/4/JV0750040701.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-4-701&mimeType=html&fmt=ahah

References

  1. Ackermann H. -W., DuBow M. S. 1987 Viruses of Prokaryotes II Natural Groups of Bacteriophages pp 108–113 Boca Raton: CRC Press;
    [Google Scholar]
  2. Ackermann H. -W., Eisenstark A. 1974; The present state of phage taxonomy. Intervirology 3:201–219
    [Google Scholar]
  3. Ackermann H. -W., DuBow M. S., Jarvis A. W., Jones L. A., Krylov V. N., Maniloff J., Rocourt J., Safferman R. S., Schneider J., Seldin J., Sozzi T., Stewart P. R., Werquin M., Wünsche L. 1992; The species concept and its application to tailed phages. Archives of Virology 124:69–82
    [Google Scholar]
  4. Audurier A., Rocourt J., Courtieu A. L. 1977; Isolement et characterisation de bacteriophages de Listeria monocytogenes . Annales de Microbiologie (Institut Pasteur) 128A:185–188
    [Google Scholar]
  5. Bjellqvist B., Ek K., Righetti P. G., Gianazza E., Görg A., Westermeibr R., Postel W. 1982; Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. Journal of Biochemical and Biophysical Methods 6:317–339
    [Google Scholar]
  6. Blum H., Beier H., Gross H. J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99
    [Google Scholar]
  7. Braun V. Jr Hertwig S., Neve H., Geis A., Teuber M. 1989; Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization and protein profiles. Journal of General Microbiology 135:2551–2560
    [Google Scholar]
  8. Casjens S., Hendrix R. 1988; Control mechanisms in dsDNA bacteriophage assembly. In The Bacteriophages I pp 15–92 Calendar R. Edited by New York: Plenum Press;
    [Google Scholar]
  9. Chang J. Y., Knecht R., Braun D. G. 1981; Amino acid analysis at the picomole level. Biochemical Journal 199:547–555
    [Google Scholar]
  10. Cornish-Bowden A. 1979; How reliably do amino acid composition comparisons predict sequence similarities between proteins?. Journal of Theoretical Biology 76:369–386
    [Google Scholar]
  11. Estela L. A., Sofos J. N., Flores B. B. 1992; Bacteriophage typing of Listeria monocytogenes cultures isolated from seafoods. Journal of Food Protection 55:13–17
    [Google Scholar]
  12. Felsenstein J. 1989; PHYLIP - phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  13. Gersten D. M., Kurian P., Ledley G., Park C. M., Suhocki P. V. 1981; Analysis of bacteriophage T4 coat proteins by twodimensional electrophoresis and computerized densitometry. Electrophoresis 2:123–125
    [Google Scholar]
  14. Görg A. 1991; Two-dimensional electrophoresis. Nature; London: 349545–546
    [Google Scholar]
  15. Görg A., Postel W., Weser J., Günther S., Strahler J. R., Hanash S. M., Somerlot L. 1987; Elimination of point streaking on silver stained two -dimensional gels by addition of iodoacetamide to the equilibration buffer. Electrophoresis 8:122–124
    [Google Scholar]
  16. Görg A., Postel W., Günther S. 1988; The current state of twodimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531–546
    [Google Scholar]
  17. Kyhse-Andersen J. 1984; Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Journal of Biochemical and Biophysical Methods 10:203–209
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  19. Lee J. S., Stewart P. R. 1985; The virion proteins and ultrastructure of Staphylococcus aureus bacteriophages. Journal of General Virology 66:2017–2027
    [Google Scholar]
  20. Loessner M. J. 1991; Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Applied and Environmental Microbiology 57:882–884
    [Google Scholar]
  21. Loessner M. J., Busse M. 1990; Bacteriophage typing of Listeria species. Applied and Environmental Microbiology 56:1912–1918
    [Google Scholar]
  22. Loessner M. J., Scherer S. 1992; Elimination of sample diffusion and lateral band spreading in isoelectric focusing employing readymade immobilized pH gradient gels. Electrophoresis 13:461–163
    [Google Scholar]
  23. Loessner M. J., Goeppl S., Busse M. 1991; The phagovar variability of Listeria strains under the influence of virulent and temperate bacteriophages. Letters in Applied Microbiology 12:192–195
    [Google Scholar]
  24. Loessner M. J., Neugirg E., Zink R., Scherer S. 1993; Isolation, classification and molecular characterization of bacteriophages for Enterobacter species. Journal of General Microbiology 139:2627–2633
    [Google Scholar]
  25. Mclauchlin J., Audurier A., Taylor A. G. 1986; Aspects of the epidemiology of human Listeria monocytogenes infections in Britain 1967-1984; the use of serotyping and phage typing. Journal of Medical Microbiology 22:367–377
    [Google Scholar]
  26. Mata J., Ritzenthaler P. 1988; Present state of lactic acid bacteriophage taxonomy. Biochimie 70:395–399
    [Google Scholar]
  27. Neve H., Krusch U., Teuber M. 1989; Classification of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus isolated from yoghurt and Swiss-type cheese. Applied Microbiology and Biotechnology 30:624–629
    [Google Scholar]
  28. O’Farrell P. H. 1975; High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250:4007–4021
    [Google Scholar]
  29. Ortel S., Ackermann H.-W. 1985; Morphologie von neuen Listeriaphagen. Zentralblattfur Bakteriologie and Hygiene, Abteilung 1 (Originate, Reihe A) 260:423–427
    [Google Scholar]
  30. Righetti P. G. 1990 Immobilized pH Gradients: Theory and Methodology Amsterdam: Elsevier;
    [Google Scholar]
  31. Rimpiläinen MA., Righetti P. G. 1985; Membrane protein analysis by isoelectric focusing in immobilized pH gradients. Electrophoresis 6:419–422
    [Google Scholar]
  32. Rocourt J., Schrettenbrunner A., Seeliger H.P.R. 1982; Isolation of bacteriophages from Listeria monocytogenes serovar 5 and L. innocua. Zentralblatt für Bakteriologie und Hygiene, Abteilung 1 (Originate, Reihe A) 251:505–511
    [Google Scholar]
  33. Rocourt J., Audurier A., Courtieu A. L., Durst J., Ortel S., Schrettenbrunner A., Taylor A. G. 1985; A multi centre study on the phage typing of Listeria monocytogenes. Zentralblatt fiir Bakteriologie und Hygiene, Abteilung 1 (Originate, Reihe A) 259:489–497
    [Google Scholar]
  34. Rocourt J., Gilmore M., Goebel W., Seeliger H. P. R. 1986; DNA relatedness among Listeria monocytogenes and L. innocua bacteriophages. Systematic and Applied Microbiology 8:42–47
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Shaw G. 1992; Convenient methods for the display, comparison and interpretation of amino acid composition data. BioTechniques 12:886–891
    [Google Scholar]
  37. Stuart S. E., Welshimer H. J. 1973; Intrageneric relatedness of Listeria Pirie. International Journal of Systematic Bacteriology 23:8–14
    [Google Scholar]
  38. Sword C. P., Pickett M. J. 1961; The isolation and characterization of bacteriophages from Listeria monocytogenes. Journal of General Microbiology 25:241–248
    [Google Scholar]
  39. Zink R., Loessner M. J. 1992; Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Applied and Environmental Microbiology 58:296–302
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-4-701
Loading
/content/journal/jgv/10.1099/0022-1317-75-4-701
Loading

Data & Media loading...

Most cited Most Cited RSS feed