Intermediates in influenza virus PR/8 haemagglutinin-induced membrane fusion Free

Abstract

The fusion kinetics with erythrocyte ghosts of two influenza A virus strains, A/Aichi/2/68 (X:31) and A/PR/8/34 (PR/8), were compared and correlated with the kinetics of haemagglutinin (HA) conformational change. Previously it had been shown that X:31 fuses with liposomes or erythrocytes at 4 °C, pH 5 after a lag time of 5 to 10 min whereas PR/8 displayed no fusion with liposomes at that temperature. We have confirmed the absence of cold fusion by PR/8 with erythrocyte ghosts. In contrast to X:31, PR/8 could not be committed to fuse at neutral pH and 37 °C by a preincubation at low pH and 4 °C. To examine whether the lack of commitment and cold fusion were due to a failure of PR/8 HA to undergo conformational changes at low temperature and pH, we analysed susceptibility of HA to proteinase K digestion, liposome binding to the virus, and immunoprecipitations of HA with conformation-specific antibodies. Although there was little binding of PR/8 to liposomes at 4 °C and pH 5, we did observe exposure of the fusion peptide. This study reveals a low temperature intermediate in membrane fusion exhibited by the HA of influenza virus strain PR/8, which involves low pH-induced conformational changes including exposure of the fusion peptide with little interaction of HA with the target membrane.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-2-395
1994-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/2/JV0750020395.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-2-395&mimeType=html&fmt=ahah

References

  1. Brunner J., Zugliani C., Mischler R. 1991; Fusion activity of influenza virus PR8/34 correlates with a temperature-induced conformational change within the hemagglutinin ectodomain detected by photochemical labeling. Biochemistry 30:2432–2438
    [Google Scholar]
  2. Clague M. J., Schoch C., Blumenthal R. 1991; Delay time for influenza hemagglutinin-induced membrane fusion depends on the haemagglutinin surface density. Journal of Virology 65:2402–2407
    [Google Scholar]
  3. Doms R. W., Helenius A., White J. 1985; Membrane fusion activity of the influenza virus hemagglutinin: the low pH-induced conformational change. Journal of Biological Chemistry 260:2973–2981
    [Google Scholar]
  4. Formanowski F., Wharton S. A., Calder L. J., Hofbauer C., Meier-Ewert H. 1990; Fusion characteristics of influenza C viruses. Journal of General Virology 71:1181–1188
    [Google Scholar]
  5. Hoekstra D., DeBoer T., Klappe K., Wilschut J. 1984; Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681
    [Google Scholar]
  6. Kaplan D., Zimmerberg J., Puri A., Sarkar D. P., Blumenthal R. 1991; Single cell fusion events induced by influenza hemagglutinin: studies with rapid-flow, quantitative fluorescence microscopy. Experimental Cell Research 195:137–144
    [Google Scholar]
  7. Kemble G. W., Bodian D. L., Rose J., Wilson I. A., White J. M. 1992; Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin. Journal of Virology 66:4940–4950
    [Google Scholar]
  8. Krumbiegel M., Dimitrov D. S., Puri A., Blumenthal R. 1992; Dextran sulfate inhibits fusion of influenza virus and cells expressing influenza hemagglutinin with red blood cells. Biochimica et biophysica acta 1110:158–164
    [Google Scholar]
  9. Morris S. J., Sarkar D. P., White J. M., Blumenthal R. 1989; Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells. Journal of Biological Chemistry 264:3972–3978
    [Google Scholar]
  10. Puri A., Booy F., Doms R. W., White J. M., Blumenthal R. 1990; Conformational changes and fusion activity of influenza hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. Journal of Virology 64:3824–3832
    [Google Scholar]
  11. Rafalski M., Ortiz A., Rockwell A., Van Ginkel L. C., Lear J. D., DeGrado W. F., Wilschut J. 1991; Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N- terminal peptides with phospholipid vesicles. Biochemistry 30:10211–10220
    [Google Scholar]
  12. Sarkar D. P., Morris S. J., Eidelman O., Zimmerberg J., Blumenthal R. 1989; Initial stages of influenza hemagglutinin- induced cell fusion monitored simultaneously by two fluorescent events: cytoplasmic continuity and lipid mixing. Journal of Cell Biology 109:113–122
    [Google Scholar]
  13. Sato S. B., Kawasaki K., Ohnishi S. 1983; Hemolytic activity of influenza virus hemagglutinin glycoprotein activated in mildly acidic environments. Proceedings of the National Academy of Sciences, U.S.A 80:3153–3157
    [Google Scholar]
  14. Schoch C., Blumenthal R., Clague M. J. 1992; Identification and characterization of a long lived state for influenza virus- erythrocyte complexes committed to fusion at neutral pH. FEBS Letters 311:221–225
    [Google Scholar]
  15. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Water-Field M. D., White J. M., Wilson I. A., Wiley D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, U.S.A 79:968–972
    [Google Scholar]
  16. Stegmann T., Booy F. P., Wilschut J. 1987; Effects of low pH on influenza virus. Activation and inactivation of the membrane fusion capacity of the hemagglutinin. Journal of Biological Chemistry 262:17744–17749
    [Google Scholar]
  17. Stegmann T., White J. M., Helenius A. 1990; Intermediates in influenza-induced membrane fusion. EMBO Journal 9:4231–4241
    [Google Scholar]
  18. Stegmann T., Delfino J. M., Richards F. M., Helenius A. 1991; The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. Journal of Biological Chemistry 266:18404–18410
    [Google Scholar]
  19. Tsurudome M., Gluck R., Graf R., Falchetto R., Schaller U., Brunner J. 1992; Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. Journal of Biological Chemistry 267:20225–20232
    [Google Scholar]
  20. Wharton S. A., Martin S. R., Ruigrok R. W. H., Skehel J. J., Wiley D. C. 1988; Membrane fusion by peptide analogues of influenza virus haemagglutinin. Journal of General Virology 69:1847–1857
    [Google Scholar]
  21. White J. M. 1990; Viral and cellular fusion proteins. Annual Review of Physiology 52:675–697
    [Google Scholar]
  22. White J. M., Wilson I. A. 1987; Anti-peptide antibodies detect steps in a protein conformational change: low pH activation of the influenza virus hemagglutinin. Journal of Cell Biology 56:365–394
    [Google Scholar]
  23. White J., Kartenbeck J., Helenius A. 1982; Membrane fusion activity of influenza virus. EMBO Journal 1:217–222
    [Google Scholar]
  24. Yewdell J. W., Taylor A., Yellen A., Caton A., Gerhard W., Bachi T. 1993; Mutations in or near the fusion peptide of the influenza virus hemagglutinin affect an antigenic site in the globular region. Journal of Virology 67:933–942
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-2-395
Loading
/content/journal/jgv/10.1099/0022-1317-75-2-395
Loading

Data & Media loading...

Most cited Most Cited RSS feed