Calcium is needed for the thermostability of influenza B virus neuraminidase Free

Abstract

The activity and stability of influenza vims neuraminidase is known to depend on the presence of calcium ions. The atomic structure of the tetrameric neuraminidase head shows two distinct Ca binding sites, one with low affinity on the molecular fourfold symmetry axis and one with high affinity close to the active site in each of the monomers. Here we show that Ca is essential for the thermostability of the isolated neuraminidase tetramer. Inactivation of Ca-free neuraminidase at high temperatures is accompanied by changes in protein structure leading to protease sensitivity. More than one Ca ion per tetramer is involved in stabilization, suggesting a role for the high affinity Ca binding site and the cooperative stabilization of the subunits. Sites which are located close to the fourfold axis of the neuraminidase tetramer and which are able to bind a variety of different metal ions are also described.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-2-381
1994-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/2/JV0750020381.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-2-381&mimeType=html&fmt=ahah

References

  1. Aymard-Henry M., Coleman M. T., Dowdle W. R., Laver W. G., Schild G. C., Webster R. G. 1973; Influenza neuraminidase and neuraminidase-inhibitor test procedures. Bulletin of the World Health Organization 48:199–202
    [Google Scholar]
  2. Baker N. J., Gandhi S. S. 1976; Effect of Ca++ on the stability of influenza virus neuraminidase. Archives of Virology 52:7–18
    [Google Scholar]
  3. Boschman T. A. C., Jacobs J. 1965; The influence of ethylene- diaminetetraacetate on various neuraminidases. Biochemische Zeitschrift 342:532–541
    [Google Scholar]
  4. Brünger A. T. 1990 X-PLOR Version 2.1 Manual New Harbor: Yale University;
    [Google Scholar]
  5. Burmeister W. P. 1992 Determination de la structure de la neuraminidase du virus de la grippe B/Beijing/1/87 par cristallo-graphie aux rayons X. Ph.D. thesis Université Joseph Fourier, Grenoble;
    [Google Scholar]
  6. Burmeister W. P., Daniels R. S., Dayan S., Gagnon J., Cusack S., Ruigrok R. W. H. 1991; Sequence and crystallization of influenza B/Beijing/1/87 neuraminidase. Virology 180:226–272
    [Google Scholar]
  7. Burmeister W. P., Ruigrok R. W. H., Cusack S. 1992; The 2·2 Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO Journal 11:49–56
    [Google Scholar]
  8. Chong A. K. J., Pegg M. S., Von Itzstein M. 1991; Influenza virus sialidase: effect of calcium on steady-state kinetic parameters. Biochimica el biophysica acta 1077:65–71
    [Google Scholar]
  9. Drzeniek R. 1972; Viral and bacterial neuraminidases. Current Topics in Microbiology and Immunology 59:35–74
    [Google Scholar]
  10. Green L. M., Berg J. M. 1990; Retroviral nucleocapsid protein-metal ion interactions: folding and sequence variants. Proceedings of the National Academy of Sciences, U.S.A 87:6403–6407
    [Google Scholar]
  11. Leslie A. G. N. 1992 Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography26 Warrington: Daresbury Laboratory;
    [Google Scholar]
  12. Miller W. T., Hill K. A. W., Schimmel P. 1991; Evidence for a “cysteine-histidine box” metal-binding site in an Escherichia coli aminoacyl-tRNA synthetase. Biochemistry 30:6970–6976
    [Google Scholar]
  13. Palese P., Tobita K., Ueda M., Compans R. W. 1974; Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410
    [Google Scholar]
  14. Phillips W. C., Rayment I. 1985; A systematic method for aligning double-focusing mirrors. Methods in Enzvmology 114:316–319
    [Google Scholar]
  15. Ruigrok R. W. H., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J. 1986; Electron microscopy of the low pH structure of influenza virus haemag-glutinin. EMBO Journal 5:41–49
    [Google Scholar]
  16. Taylor G. 1993; A rational attack on influenza. Nature; London: 363401–402
    [Google Scholar]
  17. Varghese J. N., Colman P. M. 1991; Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2·2 Å resolution. Journal of Molecular Biology 221:473–486
    [Google Scholar]
  18. Varghese J. N., Laver W. G., Colman P. M. 1983; Structure of the influenza virus glycoprotein antigen neuraminidase at 2·9 Å resolution. Nature; London: 30335–40
    [Google Scholar]
  19. Von Itzstein M., Wu W. -Y., Kok G. B., Pegg M. S., Dyason J. C., Jin B., Van Phan T., Smythe M. L., White H. F., Oliver S. W., Colman P. M., Varghese J. N., Ryan D. M., Woods J. M., Bethell R. C., Hotham V. J., Cameron J. M., Penn C. R. 1993; Rational design of potent sialidase-based inhibitors of influenza replication. Nature; London: 363418–123
    [Google Scholar]
  20. Wilson V. W., Rafelson M. E.Jr 1967; Studies on the neuraminidase of influenza virus. III. Stimulation of activity by bivalent cations. Biochimica et biophysica acta 146:160–166
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-2-381
Loading
/content/journal/jgv/10.1099/0022-1317-75-2-381
Loading

Data & Media loading...

Most cited Most Cited RSS feed