Localization of Functional Regions of the Cucumber Mosaic Virus RNA Replicase Using Monoclonal and Polyclonal Antibodies Free

Abstract

Monoclonal antibodies were produced using a purified cucumber mosaic virus (CMV) replicase complex, and coli-expressed CMV la and 2a proteins, as immunogens. Five out of eight monoclonal antibodies, which bound to the la and 2a proteins in immunoblots, inhibited the RNA-dependent RNA polymerase (RdRp) activity of the purified replicase complex . Epitope mapping showed that two of the inhibitory antibodies interacted with regions of the la protein containing putative helicase and methyltransferase domains respectively. Two other inhibitory antibodies mapped to a region of the 2a protein containing the GDD motif which is highly conserved in RdRps. Prior interaction of the latter antibodies with a peptide containing the GDD motif prevented the antibody-mediated inhibition of the replicase. Polyclonal antibodies which inhibited the RdRp activity of the replicase complex were also produced using peptides corresponding to conserved helicase and polymerase motifs in the la and 2a proteins. The greatest inhibition was shown by antibodies to a peptide containing the GDD motif. These results demonstrate the functional importance of the identified sequence motifs in CMV RNA replication and indicate that the motifs are located in the replicase complex at positions accessible to antibodies, consistent with roles in interacting with the RNA template, RNA primer and enzyme substrates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-11-3177
1994-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/11/JV0750113177.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-11-3177&mimeType=html&fmt=ahah

References

  1. Argos P. 1988; A sequence motif in many polymerases. Nucleic Acids Research 16:9909–9915
    [Google Scholar]
  2. Berchtold H., Reshetnikova L., Reiser C. O. A., Scirmer N. K., Sprinzl M., Hilgenfeld R. 1993; Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature; London: 365126–132
    [Google Scholar]
  3. Bruenn J. A. 1991; Relationships among the positive-strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Research 19:217–226
    [Google Scholar]
  4. Davenport G. F., Baulcombe D. C. 1993; Mutation of the GKS motif in the replicase of potato virus X. Abstracts of the IXth International Congress of Virology Glasgow, U.K:8-13August P60-8 323
    [Google Scholar]
  5. Delarue M., Poch O., Tordo N., Moras D., Argos P. 1990; An attempt to unify the structure of polymerases. Protein Engineering 3:461–467
    [Google Scholar]
  6. Goldbach R., Le Gall O., Wellink J. 1991; Alpha-like viruses in plants. Seminars in Virology 2:19–25
    [Google Scholar]
  7. Gorbalenya A. E., Koonin E. V. 1989; Viral proteins containing the purine NTP-binding site. Nucleic Acids Research 17:8413–8440
    [Google Scholar]
  8. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17:4713–4730
    [Google Scholar]
  9. Gorbalenya A. E., Koonin E. V., Wolf Y. I. 1990; A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Letters 262:145–148
    [Google Scholar]
  10. Habili N., Symons R. H. 1989; Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Research 17:9543–9555
    [Google Scholar]
  11. Hahn Y. S., Strauss E. G., Strauss J. H. 1989; Mapping of RNA temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. Journal of Virology 63:3142–3150
    [Google Scholar]
  12. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Hayes R. J., Buck K. W. 1990a; Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363–368
    [Google Scholar]
  14. Hayes R. J., Buck K. W. 1990b; Infectious cucumber mosaic virus RNA transcribed in vitro from clones obtained from cDNA amplified using the polymerase chain reaction. Journal of General Virology 71:2503–2508
    [Google Scholar]
  15. Hayes R. J., Buck K. W. 1993; Analysis of replication complexes of positive strand RNA plant viruses. In Molecular Virology: A Practical Approach pp. 1–34 Davison A. J., Elliott R. M. Edited by Oxford: IRL Press at Oxford University Press;
    [Google Scholar]
  16. Hodgman T. C. 1988; A new superfamily of replicative proteins. Nature; London: 33322–23578
    [Google Scholar]
  17. Inokuchi Y., Hirashima A. 1987; Interference with viral infection by defective RNA replicase. Journal of Virology 61:3946–3949
    [Google Scholar]
  18. Jacoba-Molina A., Ding J., Nanni R. G., Clark A. D., Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P., Hizi A., Hughes S. H., Arnold E. 1993; Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3·0 A resolution shows bent DNA. Proceedings of the National Academy of Sciences, U.S.A 90:6320–6324
    [Google Scholar]
  19. Kamer G., Argos P. 1984; Primary structural comparison of RNA dependent polymerases from plant, animals and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  20. Kao C. C., Ahlquist P. 1992; Identification of the domains required for direct interaction of the helicase-like and polymeraselike RNA replication proteins of brome mosaic virus. Journal of Virology 66:7293–7302
    [Google Scholar]
  21. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. 1992; Crystal structure at 3·5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790
    [Google Scholar]
  22. Koonin E. V. 1991; The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. Journal of General Virology 72:2197–2206
    [Google Scholar]
  23. Kroner P., Richards D., Traynor P., Ahlquist P. 1989; Defined mutations in a small region of the brome mosaic virus 2a gene cause diverse temperature-sensitive RNA replication phenotypes. Journal of Virology 63:5302–5309
    [Google Scholar]
  24. Kroner P., Young B. M., Ahlquist P. 1990; Analysis of the role of brome mosaic virus la protein domains in RNA replication, using linker insertion mutagenesis. Journal of Virology 64:6110–6120
    [Google Scholar]
  25. Liu F. -T., Zinnecker M., Hamaoka T., Katz D. H. 1979; New procedures for preparation and isolation of conjugates of proteins and synthetic co-polymer of d-amino acids and immunochemical characterization of such conjugates. Biochemistry 18:690–697
    [Google Scholar]
  26. Longstaff M., Brigneti G., Boccard F., Chapman S., Baulcombe D. 1993; Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO Journal 12:379–386
    [Google Scholar]
  27. Maina C. V., Riggs P. D., Grandea A. G., Slatko B. E., Moran L. S., Tagliamonte J. A., McReynolds L. A., Guan C. 1988; A vector to express foreign proteins in Escherichia coli by fusion to, and separation from, maltose binding protein. Gene 74:365–373
    [Google Scholar]
  28. Mi S., Stollar V. 1990; Both amino acid changes in nsPl of Sindbis virus LM21 contribute to and are required for efficient expression of the mutant phenotype. Virology 178:429–434
    [Google Scholar]
  29. Mi S., Stollar V. 1991; Expression of Sindbis virus nsPl and methyltransferase activity in Escherichia coli . Virology 184:423–427
    [Google Scholar]
  30. Mi S., Durbin R., Huang H. V., Rice C. M., Stollar V. 1989; Association of Sindbis virus RNA methyltransferase activity with the nonstructural protein nsPl. Virology 170:385–391
    [Google Scholar]
  31. Noel J. P., Hamm H. E., Sigler P. B. 1993; The 2·2 A crystal structure of transducin-α complexed with GTPγS. Nature; London: 366654–662
    [Google Scholar]
  32. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. 1985; Structure of the large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature; London: 313762–766
    [Google Scholar]
  33. Pai E. F., Krengel U., Petsko G., Goody R. S., Kabsch W., Wittinghofer A. 1990; Refined crystal structure of the triphosphate conformation of H-ras at 1·35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO Journal 9:2351–2360
    [Google Scholar]
  34. Poch O., Sauvageut I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among RNA-dependent polymerase encoding elements. EMBO Journal 8:3867–3874
    [Google Scholar]
  35. Rezaian M. A., Williams R. H. V., Gordon K. H. J., Gould A. R., Symons R. H. 1984; Nucleotide sequence of cucumber mosaic virus RNA 2 reveals a translation product significantly homologous to corresponding proteins of other viruses. European Journal of Biochemistry 143:277–284
    [Google Scholar]
  36. Rezaian M. A., Williams R. H. V., Symons R. H. 1985; Nucleotide sequence of cucumber mosaic virus RNA 1. Presence of a sequence complementary to part of a satellite RNA and homologies with other viral RNAs. European Journal of Biochemistry 150:331–339
    [Google Scholar]
  37. Rozanov M. N., Koonin E. V., Gorbalenya A. E. 1992; Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. Journal of General Virology 73:2129–2134
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Scheidel L. M., Durbin R. K., Stollar V. 1989; SVLM21, a Sindbis virus mutant resistant to methionine deprivation, encodes an altered methyltransferase. Virology 173:408–414
    [Google Scholar]
  40. Sousa R., Chung Y. J., Rose J. P., Wang B. C. 1993; Crystal structure of bacteriophage T7 RNA polymerase at 3·3 A resolution. Nature; London: 364593–599
    [Google Scholar]
  41. Traynor P., Young B. M., Ahlquist P. 1991; Deletion analysis of brome mosaic virus 2a protein: effects on RNA replication and systemic spread. Journal of Virology 65:2807–2815
    [Google Scholar]
  42. Van Der Meer J., Dorssers L., Zabel P. 1983; Antibody-linked polymerase assay on protein blots: a novel method of identifying polymerases following SDS-polyacrylamide gel electrophoresis. EMBO Journal 2:233–237
    [Google Scholar]
  43. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the a-and b-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-11-3177
Loading
/content/journal/jgv/10.1099/0022-1317-75-11-3177
Loading

Data & Media loading...

Most cited Most Cited RSS feed