Polyvalent and monoclonal antibodies identify major immunogenic proteins specific for human herpesvirus 7-infected cells and have weak cross-reactivity with human herpesvirus 6 Free

Abstract

Hyperimmune rabbit and mouse sera raised to human herpesvirus 7 (HHV-7)-infected cells and an immune human serum identified 20 [S]methionine-[S]cysteine- labelled proteins specific for HHV-7-infected cord blood mononuclear cells, ranging in apparent from 136K to 30K. The major proteins had apparent values of 121K, 100K, 87K, 85K, 60K, 51K, 46K, 42K, 40K and 36K. The human serum also identified seven [H]glucosamine-labelled glycoproteins, with apparent values of 100K, 89K, 82K, 67K, 63K, 53K and 41K. Four monoclonal antibodies (MAbs) specific for HHV- 7-infected cells were derived. Two reacted with a family of five antigenically related polypeptides (87K, 85K, 70K, 61K and 57K in apparent ), designated asthep85 complex. Two reacted with 121K and 51K proteins designated as pl21 and p51, respectively. Human sera react with high frequency with the p85 complex and to a lesser extent with pl21; hence these two proteins appear to be immunodominant for both humans and laboratory animals. The hyperimmune mouse serum and some of the MAbs showed some cross-reactivity with HHV-6A(U1102)- and 6B(Z29)-infected cells. The implications of cross-reactivity with respect to the human immune response to HHV-6 and -7 infections and prevalence analyses are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-10-2719
1994-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/10/JV0750102719.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-10-2719&mimeType=html&fmt=ahah

References

  1. Ablashi D., Agut H., Berneman Z., Campadelli-Fiume G., Carrigan D., Ceccherini-Nelli L., Chandran B., Chou S., Collandre H., Cone R., Dambauch T., Dewhurst S., Di Luca D., Foà-Tomasi L., Fleckenstein B., Frenkel N., Gallo R., Gompels U., Hall C., Jones M., Lawrence G., Martin M., Montagnier L., Neipel F., Nicholas J., Pellett P., Razzaque A., Torelli G., Thomson B., Salahuddin S., Wyatt L., Yamanishi K. 1993; Human herpesvirus-6 strain groups: a nomenclature. Archives of Virology 129:363–366
    [Google Scholar]
  2. Berneman Z. N., Gallo R. C., Ablashi D. V., Frenkel N., Katsafanas G., Kramarsky B., Brus I. 1992a; Human herpesvirus 7 (HHV-7) strain JI: independent confirmation of HHV-7. Journal of Infectious Diseases 166:690–691
    [Google Scholar]
  3. Berneman Z. N., Ablashi D. V., Li G., Eger-Fletcher M., Reitz M. S., Hung C. L., Brus I., Komaroff A. L., Gallo R. C. 1992b; Human herpesvirus 7 is a T-lymphotropic vims and is related to, but significantly different from herpesvirus 6 and cytomegalovirus. Proceedings of the National Academy of Sciences, U.S.A 89:10552–10556
    [Google Scholar]
  4. Black J. B., Inoue N., Kite-Powell K., Zaki S., Pellett P. E. 1993; Frequent isolation of human herpesvirus 7 from saliva. Virus Research 29:91–98
    [Google Scholar]
  5. Campadelli-Fiume G., Guerrini S., Xiaoming L., Foa-Tomasi L. 1993; Monoclonal antibodies to glycoprotein B differentiate human herpesviruses-6 into two clusters, variants A and B. Journal of General Virology 74:2257–2262
    [Google Scholar]
  6. Clark D. A., Freeland M. L., Mackie L. K., Jarrett R. F., Onions D. E. 1993; Prevalence of antibody to human herpesvirus7 by age. Journal of Infectious Diseases 168:251–252
    [Google Scholar]
  7. Cone R. W., Huang M.-L. W., Ashley R., Corey L. 1993; Human herpesvirus 6 DNA in peripheral blood cells and saliva from immunocompetent individuals. Journal of Clinical Microbiology 31:1262–1267
    [Google Scholar]
  8. Downing R. G., Sewankambo N., Serwadda D., Honess R., Crawford D., Jarret R., Griffin B. E. 1987; Isolation of human lymphotropicherpesvirus from Uganda. Lancet ii:390
    [Google Scholar]
  9. Ellinger K., Neipel F., Foà-Tomasi L., Campadelli-Fiume G., Fleckenstein B. 1993; The glycoprotein B homolog of human herpesvirus 6. Journal of General Virology 74:495–500
    [Google Scholar]
  10. Foà-Tomasi L., Boscaro A., Di Gaeta S., Campadelli-Fiume G. 1991; Monoclonal antibodies to gp 100 inhibit penetration of human herpesvirus 6 and polycaryocyte formation in susceptible cells. Journal of Virology 65:4124–4129
    [Google Scholar]
  11. Foà-Tomasi L., Guerrini S., Huang T., Campadelli-Fiume G. 1992; Characterization of human herpesvirus-6 (U1102) and (GS) gp112 and identification of the Z29-specified homolog. Virology 191:511–516
    [Google Scholar]
  12. Frenkel N., Wyatt L. S. 1992; HHV-6 and HHV-7 as exogenous agents in human lymphocytes. Development of Biology Standard 76:259–265
    [Google Scholar]
  13. Frenkel N., Schirmer E. C., Wyatt L. S., Katsafanas G., Roffman E., Danovich R. M., June C. H. 1990; Isolation of a new human herpesvirus from human CD4 T-cell. Proceedings of the National Academy of Sciences, U.S.A 87:748–752
    [Google Scholar]
  14. Gompels U., Minson A. 1986; The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153:230–247
    [Google Scholar]
  15. Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of glycoprotein H (gH) in herpesviruses: nucleotide sequence of the gH gene from herpesvirussaimiri. Journal of General Virology 69:2819–2829
    [Google Scholar]
  16. Kondo K., Kondo T., Okuno T., Takahashi M., Yamanishi K. 1991; Latent human herpesvirus 6 infection of human monocytes/macrophages. Journal of General Virology 72:1401–1408
    [Google Scholar]
  17. Liu D. X., Gompels U. A., Foà-Tomasi L., Campadelli-Fiume G. 1993; Human herpesvirus-6 glycoprotein H and L homologues are components of the gp 100 complex and the gH external domain is the target for neutralising antibodies. Virology 197:12–22
    [Google Scholar]
  18. Lopez C., Pellett P., Steward J., Goldsmith C., Sanderlin K., Black J., Warlfield D., Feorino P. 1988; Characteristics OF human herpesvirus-6. Journal of Infectious Diseases 157:1271–1273
    [Google Scholar]
  19. Pellett P. E., Black J. B., Yamamoto M. 1992; Human herpesvirus 6: the virus and the search for its role as a human pathogen. Advances in Virus Research 41:1–52
    [Google Scholar]
  20. Pereira L. 1985; Glycoproteins specified by human cytomegalovirus. In The Herpesviruses 3 pp. 383–404 Roizman B. Edited by New York: Plenum Press;
    [Google Scholar]
  21. Salahuddin S. Z., Ablashi D. V., Markham P. D., Josephs S. F., Sturzenegger S., Kaplan M., Halligan G., Biberfeld P., Wong-Staal F., Kramarsky B., Gallo R. C. 1986; Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234:596–601
    [Google Scholar]
  22. Spaete R., Thayer R., Probert W., Masiarz F., Chamberlain S., Rasmussen L., Merigan T. C., Packl C. 1988; Human cytomegalovirus strain Towne glycoprotein B is processed by proteolytic cleavage. Virology 167:207–225
    [Google Scholar]
  23. Wyatt L. S., Frenkel N. 1992; Human herpesvirus 7 is a constitutive inhabitant of adult human saliva. Journal of Virology 66:3206–3209
    [Google Scholar]
  24. Wyatt L. S., Rodriguez W. J., Balachandran N., Frenkel N. 1991; Human herpesvirus 7: antigenic properties and prevalence in children and adults. Journal of Virology 65:6260–6265
    [Google Scholar]
  25. Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., Kurata T. 1988; Identification of human herpesvirus 6 as a causal agent for exanthemsubitum. Lancet i:1065–1067
    [Google Scholar]
  26. Yasukawa M., Yoshihiro Y., Furukawa M., Fujita S. 1993; Specificity analysis of human CD4+ T-cell clones directed against human herpesvirus 6 (HHV-6), HHV-7, and human cytomegalovirus. Journal of Virology 67:6259–6264
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-10-2719
Loading
/content/journal/jgv/10.1099/0022-1317-75-10-2719
Loading

Data & Media loading...

Most cited Most Cited RSS feed