1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-1-1
1994-01-01
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/1/JV0750010001.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-1-1&mimeType=html&fmt=ahah

References

  1. Abbot S. D., Rowe M., Cadwallader K., Ricksten A., Gordon J., Wang F., Rymo L., Rickinson A. B. 1990; Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. Journal of Virology 64:2126–2134
    [Google Scholar]
  2. Adldinger H. K., Delius H., Freese U, Bornkamm G. W. 1985; A putative transforming gene of Jijoye vims differs from that of Epstein-Barr virus prototypes. Virology 141:221–234
    [Google Scholar]
  3. Alfieri C., Birkenbach M., Kieff E. 1991; Early events in Epstein-Barr virus infection of human B-lymphocytes. Virology 181:595–608
    [Google Scholar]
  4. Allan G. J., Inman G. J., Parker B. D., Rowe D. T., Farrell P. J. 1992; Cell growth effects of Epstein-Barr virus leader protein. Journal of General Virology 73:1547–1551
    [Google Scholar]
  5. Allday M. J., Crawford D. H., Griffin B. E. 1989; Epstein- Barr virus latent gene expression during the initiation of B cell immortalization. Journal of General Virology 70:1755–1764
    [Google Scholar]
  6. Allday M. J., Crawford D. H., Thomas J. A. 1993; Epstein- Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. Journal of General Virology 74:361–369
    [Google Scholar]
  7. Ambinder R. F., Mullen M., Chang Y.-N., Hayward G. S., Hayward S. D. 1991; Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. Journal of Virology 65:1466–1478
    [Google Scholar]
  8. Austin P. J., Flemington E., Yandava C. N., Strominger J. L., Speck S. H. 1988; Complex transcription of the Epstein-Barr virus BamHlfragment H rightward open reading frame 1 (BHRF-1) in latently and lyrically infected B-lymphocytes. Proceedings of the National Academy of Sciences U.S.A.: 853678–3682
    [Google Scholar]
  9. Baichwal V. R., Sugden B. 1987; Posttranslational processing of an Epstein-Barr virus-encoded protein expressed in cells transformed by Epstein-Barr virus. Journal of Virology 61:866–875
    [Google Scholar]
  10. Baichwal V. R., Sugden B. 1988; Transformation of Balb 3T3 cells by the BNLF-1 gene of Epstein-Barr virus. Oncogene 2:461–467
    [Google Scholar]
  11. Batterson W., Roizman B. 1983; Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. Journal of Virology 46:371–377
    [Google Scholar]
  12. Birkenbach M., Josefsen K., Yalamanchili R., Lenoir G., Kieff E. 1993; Epstein-Barr virus-induced genes: first lymphocyte- specific G-protein-coupled peptide receptors. Journal of Virology 67:2209–2220
    [Google Scholar]
  13. Bodescot M., Perricaudet M. 1986; Epstein-Barr virus mRNAs produced by alternative splicing. Nucleic Acids Research 14:7103–7114
    [Google Scholar]
  14. Boos H., Berger R., Kuklik-ROOS C., Iftner T., Mueller-Lantzsch N. 1987; Enhancement of Epstein-Barr virus membrane protein (LMP) expression by serum, TPA. or n-butyrate in latently-infected Raji cells. Virology 159:161–165
    [Google Scholar]
  15. Brooks L., Yao Q. Y., Rickinson A. B., Young L. S. 1992; Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: co-expression of EBNA-1, LMP-1 and LMP-2 transcripts. Journal of Virology 66:2689–2697
    [Google Scholar]
  16. Brooks L. A., Lear A. L., Young L. S., Rickinson A. B. 1993; Transcripts from the Epstein-Barr virus BamHl A fragment are detectable in all three forms of virus latency. Journal of Virology 67:3182–3190
    [Google Scholar]
  17. Burkhardt A. L., Bolen J. B., Kieff E., Longnecker R. 1992; An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. Journal of Virology 66:5161–5167
    [Google Scholar]
  18. Busson P., McCoy R., Sadler R., Gilligan K., Tursz T., Raab-Traub N. 1992; Consistent transcription of the Epstein-Barr virus LMP-2 gene in nasopharyngeal carcinoma. Journal of Virology 66:3257–3262
    [Google Scholar]
  19. Calender A., Billaud M., Auby J. P., Banchereau J., Vuillame M., Lenoir G. M. 1987; Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitroinfection of EBV- negative B-lymphoma cells. Proceedings of the National Academy of Sciences U.S.A.: 848060–8064
    [Google Scholar]
  20. Cambier J. C., Justement L. B., Newell M. K., Chen Z. Z., Harris L. K., Sandoval V. M., Klemsz M. J., Ransom J. T. 1987; Transmembrane signals and intracellular “second mess-engers” in the regulation of quiescent B-lymphocyte activation. Immunology Reviews 95:37
    [Google Scholar]
  21. Chen C.-L., Sadler R. H., Walling D. M., Su I.-L, Raab-Traub N. 1993; Epstein-Barr virus (EBV) gene expression in EBV-positive T-cell lymphomas. Journal of Virology 67:6303–6308
    [Google Scholar]
  22. Chen M.-R., Middeldorp J. M., Hayward S. D. 1993; Separation of the complex DNA-binding domain of EBNA-1 into DNA recognition and dimerization subdomains of novel structure. Journal of Virology 67:4875–4885
    [Google Scholar]
  23. Cheung R. K., Dosch H.-M. 1991; The tyrosine kinase lck is critically involved in the growth transformation of human B- lymphocytes. Journal of Biological Chemistry 266:8667–8670
    [Google Scholar]
  24. Cleary M. O., Epstein M. A., Finerty S., Dorfman R. F., Bornkamm G. W., Kirkwood J. K., Morgan A. J., Sklar J. 1985; Individual tumors of multifocal EB virus-induced malignant lymphomas in tamarins arise from different B-cell clones. Science 228:722–724
    [Google Scholar]
  25. Cleary M. L., Smith S. D., Sklar J. 1986; Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14; 18) translocation. Cell 47:19–28
    [Google Scholar]
  26. Cohen J. I. 1992; A region of herpes simplex virus VP16 can substitute for a transforming domain of Epstein-Barr virus nuclear protein 2. Proceedings of the Naional Academy of Sciences U.S.A.: 898030–8034
    [Google Scholar]
  27. Cohen J.L, Mannick J., Kieff E. 1989; Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proceedings of the National Academy of Sciences U.S.A.: 869558–9562
    [Google Scholar]
  28. Cohen J. I., Wang F., Kieff E. 1991; Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. Journal of Virology 65:2545–2554
    [Google Scholar]
  29. Cohen J. I., Picchio G. R., Mosier D. E. 1992; Epstein-Barr virus nuclear protein 2 is a critical determinant for tumour growth in SCID mice and for transformation in vitro. Journal of Virology 66:7555–7559
    [Google Scholar]
  30. Dambaugh T., Hennessy K., Chamnankit L., Kieff E. 1984; U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proceedings of the National Academy of Sciences U.S.A.: 817207–7211
    [Google Scholar]
  31. Dambaugh T., Wang F., Hennessy K., Woodland E., Rickinson A. B., Kieff E. 1986; Expression of the Epstein-Barr virus nuclear protein 2 in rodent cells. Journal of Virology 59:453–162
    [Google Scholar]
  32. Dawson C. W., Rickinson A. B., Young L. S. 1990; Epstein- Barr virus latent membrane protein inhibits human epithelial cell differentiation. Nature; London: 344777–780
    [Google Scholar]
  33. Deacon E. M., Pallesen G., Niedobitek G., Crocker J., Brooks L. , Young L. S. 1993; Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. Journal of Experimental Medicine 177:339–349
    [Google Scholar]
  34. Fahraeus R., Fu H. L., Ernberg I., Finke J., Rowe M., Klein G., Falk K., Nilsson E., Yadav M., Busson P., Tursz T., Kallin B. . 1988; Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. International Journal of Cancer 42:329–338
    [Google Scholar]
  35. Fahraeus R., Rymo L., Klein G. 1990a; Morphological transformation of human keratinocytes expressing the LMP gene of Epstein-Barr virus. Nature; London: 345447–449
    [Google Scholar]
  36. Fahraeus R., Jansson A., Ricksen A., Sjoblom A., Rymo L. 1990b; Epstein-Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proceedings of the National Academy of Sciences U.S.A.: 877390–7394
    [Google Scholar]
  37. Falk K., Ernberg I., Sakthivel R., Davis J., Christensson B., Luka J., Okano M., Grierson H. L., Klein G., Purtilo D. T. 1990; Expression of Epstein-Barr virus-encoded proteins and B- cell markers in fatal infectious mononucleosis. International Journal of Cancer 46:976–984
    [Google Scholar]
  38. Fennewald S., Van Santen V., Kieff E. 1984; Nucleotide sequence of an mRNA transcribed in latent growth transforming virus infection indicates that it may encode a membrane protein. Journal of Virology 51:411–419
    [Google Scholar]
  39. Fingeroth J. D., Weis J. J., Tedder T. F., Strominger J. L., Biro P. A., Fearon D. T. 1984; Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proceedings of the National Academy of Sciences U.S.A.: 814510–4516
    [Google Scholar]
  40. Gilligan K. J., Rajadurai P.LIN, Busson P., Abdel-Hamid M., Prasad U., Tursz T., Raab-Traub N. 1991; Expression of the Epstein-Barr virus BamHlA fragment in nasopharyngeal carcinoma: evidence for a viral protein expressed in vivo. Journal of Virology 65:6252–6259
    [Google Scholar]
  41. Glickman J. N., Howe J. G., Steitz J. A. 1988; Structural analyses of EBER-1 and EBER-2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. Journal of Virology 62:902–911
    [Google Scholar]
  42. Gonzalez G. A., Montminy M. R. 1989; Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680
    [Google Scholar]
  43. Gordon J., Walker L., Guy G., Rowe M., Rickinson A. 1986; Control of human B-lymphocyte replication: transforming Epstein- Barr virus exploits three distinct signals to undermine three separate control points in B-cell growth. Immunology 58:591–595
    [Google Scholar]
  44. Grasser F. A., Haiss P., Gottel S., Mueller-Lantzsch N. 1991; Biochemical characterization of Epstein-Barr virus nuclear antigen 2A. Journal of Virology 65:3779–3788
    [Google Scholar]
  45. Gratama J. W., Oosterveer M.A.P., Zwaan F. E., Lepoutre J., Klein G., Ernberg I. 1988; Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: implications for sites of viral latency. Proceedings of the National Academy of Sciences U.S.A.: 858693–8696
    [Google Scholar]
  46. Gratama J. W., Zutter M. M., Minarovits J., Oosterveer M.A.P., Thomas E. D., Klein G., Ernberg I. 1991; Expression of Epstein-Barr virus-encoded growth-transformation-associated proteins in lymphoproliferations of bone-marrow transplant recipients. International Journal of Cancer 47:188–192
    [Google Scholar]
  47. Hammarskjold M. -L., Simurda M. C. 1992; Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF- kB activity. Journal of Virology 66:6496–6501
    [Google Scholar]
  48. Hammerschmidt W., Sugden B., Baichwal V. R. 1989; Genetic analysis of immortalizing functions of Epstein-Barr virus in human B- lymphocytes. Nature; London: 340393–397
    [Google Scholar]
  49. Hammerschmidt W., Sugden B., Baichwal V. R. 1989; The transforming domain alone of the latent membrane protein of Epstein-Barr virus is toxic to cells when expressed at high levels. Journal of Virology 63:2469–2475
    [Google Scholar]
  50. Henderson S., Rowe M., Gregory C., Croom-Carter D., Wang F., Longnecker R., Kieff E., Rickinson A. 1991; Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected cells from programmed cell death. Cell 65:1107–1115
    [Google Scholar]
  51. Hennessy K., Kieff E. 1983; One of the two Epstein-Barr virus nuclear antigens contains a glycine-alanine co-polymer domain. Proceedings of the National Academy of Sciences U.S.A.: 805665–5669
    [Google Scholar]
  52. Hitt M. M., Allday M. J., Hara T., Karran L., Jones M. D., Busson P., Tursz T., Ernberg I., Griffin B. E. 1989; EBV gene expression in an NPC-related tumour. EMBO Journal 8:2639–2651
    [Google Scholar]
  53. Hurley E. A., Thorley-Lawson D. T. 1988; B-cell activation and the establishment of Epstein-Barr virus latency. Journal of Experimental Medicine 168:2059–2075
    [Google Scholar]
  54. Inoue N., Harada S., Honma T., Kitamura T., Yanagi K. 1991; The domain of Epstein-Barr virus nuclear antigen 1 essential for binding to oriP region has a sequence fitted for the hypothetical basic-helix-loop-helix structure. Virology 182:84–93
    [Google Scholar]
  55. Jat P., Arrand J. 1982; In vitro transcription of two Epstein-Barr virus specified small RNA molecules. Nucleic Acids Research 10:3407–3425
    [Google Scholar]
  56. Jiang W.-Q., Szekely L., Wendel-Hansen V., Ringertz N., Klein G., Rosen A. 1991; Co-localization of the retinoblastoma protein and the Epstein-Barr virus-encoded nuclear antigen EBNA- 5. Experimental Cell Research 197:314–318
    [Google Scholar]
  57. Jones M. D., Foster L., Sheedy T., Griffin B. E. 1984; The EB virus genome in Daudi Burkitt’s lymphoma cells has a deletion similar to that observed in a non-transforming strain (P3HR-1) of the virus. EMBO Journal 3:813–821
    [Google Scholar]
  58. Julius D., Livelli T. J., Jessell T. M., Axel R. 1989; Ectopic expression of the serotonin lc receptor and the triggering of malignant transformation. Science 244:1057–1062
    [Google Scholar]
  59. Kallin B., Dillner J., Ernberg L, Ehlin-Henriksson B., Rosen A., Henle W., Henle G., Klein G. 1986; Four virally- determined nuclear antigens are expressed in Epstein-Barr virus- transformed cells. Proceedings of the National Academy of Sciences U.S.A.: 831499–1503
    [Google Scholar]
  60. Kalter S. P., Riggs S. A., Cabanillas F., Butler J. J., Hage-Meister F. B., Mansell P. W., Newell G. R., Velasquez W. S., Salvador P., Barlogie B., Rios A., Hbrsh E. M. 1985; Aggressive non-Hodgkin’s lymphomas in immunocompromised homosexual males. Blood 66:655–659
    [Google Scholar]
  61. Karran L., Gao Y., Smith P. R., Griffin B. E. 1992; Expression of a family of complementary-strand transcripts in Epstein-Barr virus-infected cells. Proceedings of the National Academy of Sciences U.S.A.: 898058–8062
    [Google Scholar]
  62. Knutson J. C. 1990; The level of c-fgr RNA is increased by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization. Journal of Virology 64:2530–2536
    [Google Scholar]
  63. Laux G., Perricaudet M., Farrell P. J. 1988; A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO Journal 3: 769–774
    [Google Scholar]
  64. Lee M.-A., Yates J. L. 1992; BHRF1 of Epstein-Barr virus, which is homologous to human proto-oncogene bcl- 2, is not essential for transformation of B-cells or for virus replication in vitro. Journal of Virology 66:1899–1906
    [Google Scholar]
  65. Lefkowitz R. J., Caron M. G. 1988; Adrenergic receptors. Advances in Second Messenger and Phosphoprotein Research 21:1–10
    [Google Scholar]
  66. Lerner M. R., Andrews N. C., Miller G., Steitz J. A. 1981; Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosis. Proceedings of the National Academy of Sciences U.S.A.: 78805–809
    [Google Scholar]
  67. Liebowitz D., Wang D., Kieff E. 1986; Orientation patching of the latent membrane protein encoded by Epstein-Barr virus. Journal of Virology 58:233–237
    [Google Scholar]
  68. Liebowitz D., Kopan R., Fuchs E., Sample J., Kieff E. 1987; An Epstein-Barr virus transforming protein associates with vimentin in lymphocytes. Molecular and Cellular Biology 1:2299–2308
    [Google Scholar]
  69. Longnecker R., Kieff E. 1990; A second Epstein-Barr virus membrane protein (LMP-2) is expressed in latent infection and colocalizes with LMP-1. Journal of Virology 64:2319–2326
    [Google Scholar]
  70. Longnecker R., Druker B., Roberts T. M., Kieff E. 1991; An Epstein-Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. Journal of Virology 65:3681–3692. ′
    [Google Scholar]
  71. Longnecker R., Miller C. L., Miao X.-Q., Marchini A., Kieff E. 1992; The only domain which distinguishes Epstein-Barr virus latent membrane protein 2A (LMP-2A) from LMP-2B is dispensable for lymphocyte infection and growth transformation in vitro: LMP- 2A is therefore nonessential. Journal of Virology 66:6461–6469
    [Google Scholar]
  72. Longnecker R., Miller C. L., Miao X.-Q., Tomkinson B., Kieff E. 1993a; The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP-2) are dispensable for lymphocyte infection and growth transformation in vitro. Journal of Virology 67:2006–2013
    [Google Scholar]
  73. Longnecker R., Miller C. L., Tomkinson B., Miao X.-Q., Kieff E. 1993b; Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. Journal of Virology 67:5068–5074
    [Google Scholar]
  74. Mann K. P., Thorley-Lawson D. 1987; Posttranslational processing of the Epstein-Barr virus encoded p63/LMP protein. Journal of Virology 61:2100–2108
    [Google Scholar]
  75. Mann K. P., Staunton D., Thorley-Lawson D. A. 1985; Epstein-Barr virus-encoded protein found in plasma membrane of transformed cells. Journal of Virology 55:710–720
    [Google Scholar]
  76. Mannick J. B., Cohen J. I., Birkenbach M., Marchini A., Kieff E. 1991; The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte trans-formation. Journal of Virology 65:6826–6837
    [Google Scholar]
  77. Marchini A., Tomkinson B., Cohen J. I., Kieff E. 1991; BHRF1, the Epstein-Barr virus gene with homology to Bcl-2, is dispensable for B-lymphocyte transformation and virus replication. Journal of Virology 65:5991–6000
    [Google Scholar]
  78. Miller C. L., Longnecker R., Kieff E. 1993; Epstein-Barr virus latent membrane protein 2A blocks calcium mobilization in B- lymphocytes. Journal of Virology 67:3087–3094
    [Google Scholar]
  79. Miller G., Robinson J., Heston L., Lipman M. 1974; Differences between laboratory strains of Epstein-Barr virus based on immortalization, abortive infection, and interference. Proceedings of the National Academy of Sciences U.S.A.: 714006–4010
    [Google Scholar]
  80. Moorthy R., Thorley-Lawson D. A. 1990; Processing of the Epstein-Barr virus-encoded latent membrane protein p63/LMP. Journal of Virology 64:829–837
    [Google Scholar]
  81. Moorthy R., Thorley-Lawson D. A. 1993a; All three domains of the Epstein-Barr virus-encoded latent membrane protein LMP-1 are required for transformation of Rat-1 fibroblasts. Journal of Virology 67:1638–1646
    [Google Scholar]
  82. Moorthy R., Thorley-Lawson D. A. 1993b; Biochemical, genetic and functional analyses of the phosphorylation sites on the Epstein-Barr virus-encoded oncogenic latent membrane protein LMP-1. Journal of Virology 67:2637–2645
    [Google Scholar]
  83. Murray P. G., Young L. S., Rowe M., Crocker J. 1992; Immunohistochemical demonstration of the Epstein-Barr virus- encoded latent membrane protein in paraffin sections of Hodgkin′s disease. Journal of Pathology 166:1–5
    [Google Scholar]
  84. Neri A., Chang C. C., Lombardi L., Sauna M., Corradini P., Maiolo A. T., Chaganti R. S., Dalla-Favera R. 1991; B-cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-k Bp50. Cell 61:1075–1087
    [Google Scholar]
  85. Nevins J. R. 1992; E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424–429
    [Google Scholar]
  86. Pallesen G., Hamilton D. S., Rowe M., Young L. S. 1991; Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin′s disease. Lancet 337:320–322
    [Google Scholar]
  87. Pearson G. R., Luka J., Petti L., Sample J., Birkenbach M., Braun D., Kieff E. 1987; Identification of an Epstein-Barr virus gene encoding a second component of the restricted early antigen complex. Virology 160:151–161
    [Google Scholar]
  88. Peng M., Lundgren E. 1992; Transient expression of the Epstein-Barr virus LMP-1 gene in human primary B-cells induces cellular activation and DNA synthesis. Oncogene 7:1775–1782
    [Google Scholar]
  89. Petti L., Sample C., Kieff E. 1990; Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology 176:563–574
    [Google Scholar]
  90. Polvino-Bodnar M., Kiso J., Schaffer P. A. 1988; Mutational analysis of Epstein-Barr virus nuclear antigen 1 (EBNA-1). Nucleic Acids Research 16:3415–3435
    [Google Scholar]
  91. Pope J. H., Horne M. K., Scott W. 1968; Transformation of foetal human leucocytes in vitro by filtrate of a human leukaemia cell line containing herpes-like virus. International Journal of Cancer 3:857–866
    [Google Scholar]
  92. Purtilo D. T., Falk K., Pirruccello S. J., Nakamine H., Kleveland K., Davis J. R., Okano M., Taguchi Y., Sanger W. G., Beisel K. W. 1991; SCID mouse model of Epstein- Barr virus-induced lymphomagenesis of immunodeficient humans. International Journal of Cancer 47:510–517
    [Google Scholar]
  93. Qu L., Rowe T. 1992; Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. Journal of Virology 66:3715–3724
    [Google Scholar]
  94. Rabson M., Gradoville L., Heston L., Miller G. 1982; Nonimmortalizing P3J-HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. Journal of Virology 44:834–844
    [Google Scholar]
  95. Rickinson A. B. 1986; Cellular immunological responses to the virus infection. In The Epstein-Barr Virus: Recent Advances pp 75–126 Epstein M. A., Achong B. G. Edited by London: Heinemann;
    [Google Scholar]
  96. Rickinson A. B., Young L. S., Rowe M. 1987; Influence of the Epstein-Barr virus nuclear antigen EBNA-2 on the growth phenotype of virus-transformed B cells. Journal of Virology 61:1310–1317
    [Google Scholar]
  97. Ring C. J. A., Jones M. D., Griffin B. E. 1992; Alternative splicing determines the carboxy terminus of the Epstein-Barr virus nuclear antigen 5 species expressed in the Burkitt’s lymphoma cell line Daudi. Journal of General Virology 73:2715–2719
    [Google Scholar]
  98. Rogers R. P., Woisetschlaeger M., Speck S. H. 1990; Alternative splicing dictates translational start in Epstein-Barr virus transcripts. EMBO Journal 9:2273–2277
    [Google Scholar]
  99. Rooney C., Howe J. G., Speck S. H., Miller G. 1989; Influences of Burkitt’s lymphoma and primary B-cells on latent gene expression by the non-immortalizing P3J-HR-1 strain of Epstein-Barr virus. Journal of Virology 63:1531–1539
    [Google Scholar]
  100. Rooney C. M., Brimmell M., Buschle M., Allan G., Farrell P. J., Kolman J. L. 1992; Host cell and EBNA-2 regulation of Epstein-Barr virus latent cycle promoter activity in B-Iymphocytes. Journal of Virology 66:496–504
    [Google Scholar]
  101. Rosen A., Gergely P., Jondal M., Klein G., Britton S. 1977; Polyclonal immunoglobulin production after EB virus infection of human lymphocytes in vitro. Nature; London: 26752–54
    [Google Scholar]
  102. Rowe D., Metlay J., Miller G. 1985; Identification and expression of a nuclear antigen from the genomic region of the Jijoye strain of Epstein-Barr virus which is missing in its non-immortalizing deletion mutant P3HR-1. Proceedings of the National Academy of Sciences U.S.A.: 827429–7433
    [Google Scholar]
  103. Rowe M., Evans H. S., Young L. S., Hennessy K., Kieff E., Rickinson A. B. 1987; Monoclonal antibodies to the latent membrane protein of Epstein-Barr virus reveal heterogeneity of the protein and inducible expression in virus-transformed cells. Journal of General Virology 68:1575–1586
    [Google Scholar]
  104. Rowe M., Young L. S., Crocker J., Stokes H., Henderson S., Rickinson A. B. 1991; Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. Journal of Experimental Medicine 173:147–158
    [Google Scholar]
  105. Sample J., Hummel M., Braun D., Birkenbach M., Kieff E. 1986; Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable translational initiation site. Proceedings of the National Academy of Sciences U.S.A.: 835096–5100
    [Google Scholar]
  106. Sample J., Liebowitz D., Kieff E. 1989; Two related Epstein- Barr virus membrane proteins are encoded by separate genes. Journal of Virology 63:933–937
    [Google Scholar]
  107. Sample J., Young L., Martin B., Chatman T., Rickinson A., Kieff E. 1990; Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B and EBNA-3C genes. Journal of Virology 64:4084–4092
    [Google Scholar]
  108. Sample J., Brooks L., Sample C., Young L., Rowe M., Gregory C. , Kieff E. 1991; Restricted Epstein-Barr virus protein expression in Burkitt’s lymphoma is due to a different Epstein-Barr nuclear antigen-1 transcription initiation site. Proceedings of the National Academy of Sciences U.S.A.: 886343–6347
    [Google Scholar]
  109. Sample J., Henson E. B. D., Sample C. 1992; The Epstein-Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. Journal of Virology 66:4654–4661
    [Google Scholar]
  110. Scala G., Quinto I., Ruocco M. R., Mallardo M., Ambrosino C., Squitieri B., Tassone P., Venuta S. 1993; Epstein-Barr virus nuclear antigen 2 transactivates the long terminal repeat of human immunodeficiency virus type 1. Journal of Virology 67:2853–2861
    [Google Scholar]
  111. Schaefer B. C., Woisetschlaeger M., Strominger J. L., Speck S. H. 1991; Exclusive expression of Epstein-Barr virus nuclear antigen 1 in Burkitt lymphoma arises from a third promoter, distinct from the promoters used in latently-infected lymphocytes. Proceedings of the National Academy of Sciences U.S.A.: 886550–6554
    [Google Scholar]
  112. Schneffnbr M., Werness B. A., Huibregste J. M., Levine A. J., Howley P. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes degradation of p53. Cell 63:1129–1136
    [Google Scholar]
  113. Skare J., Farley J., Strominger J. L., Fresen K. O., Cho M. S., Zurhausen H. 1985; Transformation by Epstein-Barr virus requires DNA sequences in the region of the BamHl fragments Y and H. Journal of Virology 55:286–297
    [Google Scholar]
  114. Smith P. R., Griffin B. E. 1992; Transcription of the Epstein-Barr virus gene EBNAI from different promoters in nasopharyngeal carcinoma and B-lymphoblastoid cells. Journal of Virology 66:706–714
    [Google Scholar]
  115. Smith P. R., Gao Y., Karran L., Jones M. D., Snudden D., Griffin B. E. 1993; Complex nature of the major viral poly- adenylated transcripts in Epstein-Barr virus-associated tumors. Journal of Virology 67:3217–3225
    [Google Scholar]
  116. Speck S. H., Pfitzner A., Strominger J. L. 1986; An Epstein- Barr virus transcript from a latently-infected, growth transformed B- cell line encodes a highly repetitive polypeptide. Proceedings of the National Academy of Sciences U.S.A.: 839298–9302
    [Google Scholar]
  117. Sugden B. 1989; The intricate route to immortality. Cell 57:5–7
    [Google Scholar]
  118. Sugden B., Warren N. 1989; A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. Journal of Virology 63:2644–2649
    [Google Scholar]
  119. Sung N. S., Kenney S., Gutsch D., Pagano J. S. 1991; EBNA- 2 transactivates a lymphoid-specific enhancer in the BamHl-C promoter of Epstein-Barr virus. Journal of Virology 65:2164–2169
    [Google Scholar]
  120. Swaminathan S., Tomkinson B., Kieff E. 1991; Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proceedings of the National Academy of Sciences U.S.A.: 881546–1550
    [Google Scholar]
  121. Swendeman S., Thorley-Lawson D. A. 1987; The activation antigen blast-2, when shed, is an autocrine BCGF for normal and transformed B-cells. EMBO Journal 6:1637–1642
    [Google Scholar]
  122. Szekely L., Selivanova G., Magnusson K. P., Klein G., Wiman K. G. 1993; EBNA-5, an EBV-encoded nuclear antigen, binds to the Rb and p53 proteins. Proceedings of the National Academv of Sciences U.S.A.: 905455–5459
    [Google Scholar]
  123. Thorley-Lawson D. A., Israelsohn E. S. 1987; Generation of specific cytotoxic T-cells with a fragment of the Epstein-Barr virus- encoded p63/latent membrane protein. Proceedings of the National Academy of Sciences U.S.A.: 845384–5388
    [Google Scholar]
  124. Thorley-Lawson D. A., Mann K. P. 1985; Early events in Epstein-Barr infection provide a model for B-cell activation. Journal of Experimental Medicine 162:45–59
    [Google Scholar]
  125. Tomkinson B., Kieff E. 1992a; Second-site homologous recombination in Epstein-Barr virus: insertion of type 1 EBNA-3 genes in place of type 2 has no effect on in vitro infection. Journal of Virology 66:780–789
    [Google Scholar]
  126. Tomkinson B., Kieff E. 1992b; Use of second-site homologous recombination to demonstrate that Epstein-Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro. Journal of Virology 66:2893–2903
    [Google Scholar]
  127. Tomkinson B., Robertson E., Kieff E. 1993; Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B- lymphocyte growth transformation. Journal of Virology 67:2014–2025
    [Google Scholar]
  128. Walls E. V., Doyle M. G., Patel K. K., Allday M. J., Catovsky D., Crawford D. H. 1989; Activation and immortalization of leukaemic B-cells by Epstein-Barr virus. International Journal of Cancer 44:846–853
    [Google Scholar]
  129. Wang D., Liebowitz D., Kieff E. 1985; An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840
    [Google Scholar]
  130. Wang D., Liebowitz D., Wang F., Gregory C., Rickinson A., Larson R., Springer T., Kieff E. 1988; Epstein-Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino-terminus abolishes activity. Journal of Virology 62:4173–1184
    [Google Scholar]
  131. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kishimoto T., Kieff E. 1987; Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proceedings of the National Academy of Sciences U.S.A.: 843452–3456
    [Google Scholar]
  132. Wang F., Gregory C., Sample C, Liebowitz D., Murray R., Rickinson A. B., Kieff E. 1990a; Epstein-Barr virus latent membrane protein (LMP-1) and nuclear protein 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP-1 cooperatively induce CD23. Journal of Virology 64:2309–2318
    [Google Scholar]
  133. Wang F., Tsang S.-F., Kurilla M. G., Cohen J.E, Kieff E. 1990b; Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP-1. Journal of Virology 64:3407–3416
    [Google Scholar]
  134. Wei M. X., Ooka T. 1989; A transforming function of the BARF- 1 gene encoded by Epstein-Barr virus. EMBO Journal 8:2897–2903
    [Google Scholar]
  135. Wilson J., Levine A. J. 1992; The oncogenic potential of Epstein-Barr virus nuclear antigen 1 in transgenic mice. Current Topics in Microbiology and Immunology 182:375–384
    [Google Scholar]
  136. Wilson J. B., Weinberg W., Johnson R., Yuspa S., Levine A. J. 1990; Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell 61:1315–1327
    [Google Scholar]
  137. Woisetschlaeger M., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H. 1990; Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proceedings of the National Academv of Sciences U.S.A.: 871725–1729
    [Google Scholar]
  138. Woisetschlaeger M., Jin X. W., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H. 1991; Role of the Epstein- Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proceedings of the National Academy of Sciences U.S.A.: 883942–3946
    [Google Scholar]
  139. Yao Q. Y., Ogan P., Rowe M., Wood M., Rickinson A. B. 1989a; The Epstein-Barr virus: host balance in acute infectious mononucleosis patients receiving acyclovir antiviral therapy. International Journal of Cancer 43:61–66
    [Google Scholar]
  140. Yao Q. Y., Ogan P., Rowe M., Wood M., Rickinson A. B. 1989b; Epstein-Barr virus-infected B-cells persist in the circulation of acyclovir-treated virus carriers. International Journal of Cancer 43:67–71
    [Google Scholar]
  141. Yates J. L., Warren N., Reisman D., Sugden B. 1984; A exacting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently-infected cells. Proceedings of the National Academv of Sciences U.S.A.: 813806–3810
    [Google Scholar]
  142. Yates J. L., Warren N., Sugden B. 1985; Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature; London: 313812–815
    [Google Scholar]
  143. Young L. S., Dawson C. W., Clark D., Rupani H., Busson P., Tursz T., Johnson A., Rickinson A. B. 1988; Epstein-Barr virus gene expression in nasopharyngeal carcinoma. Journal of General Virology 69:1051–1065
    [Google Scholar]
  144. Young L. S., Alfieri C., Hennessy K., Evans H., O′Hara C., Anderson K. C., Ritz J., Shapiro R. A., Rickinson A., Kieff E., Cohen J. I. 1989; Expression of Epstein-Barr virus transformation-associated genes in tissue of patients with EBV lymphoproliferative disease. New England Journal of Medicine 321:1080–1085
    [Google Scholar]
  145. Zhang C. X., Lowrey P., Finerty S., Morgan A. J. 1993; Analysis of Epstein-Barr virus gene transcription in lymphoma induced by the virus in the cottontop tamarin by construction of a cDNA library with RNA extracted from a tumour biopsy. Journal of General Virology 74:509–514
    [Google Scholar]
  146. Zimber-Strobl U., Adldinger H. K., Lenoir G. M., Vuillaume M., Vonknebel-Dobberitz M., Laux G., Desgranges C., Wittman P., Freese U. K., Schneider U., Bornkamm G. W. 1986; Geographical prevalence of two Epstein-Barr virus types. Virology 154:56–66
    [Google Scholar]
  147. Zimber-Strobl U., Suentzenich K.-O., Laux G., Eick D., Cordier M., Calender A., Billaud M., Lenoir G. M., Bornkamm G. W. 1991; Epstein-Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. Journal of Virology 65:415–423
    [Google Scholar]
  148. Zimber-Strobl U., Kremmer E., Grasser F., Marschall G., Laux G., Bornkamm G. W. 1993; The Epstein-Barr virus nuclear antigen 2 interacts with the EBNA-2-responsive cri-element in the terminal protein 1 gene promoter. EMBO Journal 12:167–175
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-1-1
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error