Vaccinia virus encodes several proteins, the activity of which is essential for multiplication in different cell types. Both the C7L and K1L open reading frames (ORFs) have been characterized as viral determinants for multiplication in human cells. To confirm and extend these findings we inserted the C7L ORF into the genome of a mutant virus unable to multiply in human cells and showed that this virus recovered its ability to replicate. Deletion of C7L from a wild-type viral genome did not adversely affect virus multiplication in human cells but it did reduce replication in hamster Dede cells. When both C7L and K1L were deleted from the vaccinia virus genome only poor or no viral yields were obtained from various human cell lines. Recombinant viruses were also constructed to facilitate the study of C7L protein synthesis during infection. One virus in which the ORF was fused downstream and in-frame with the C7L ORF enabled us to characterize the C7L protein as an early gene product. Another recombinant virus was constructed so that the carboxy terminus of the C7L ORF product contained an additional 28 amino acids from the carboxy terminus of K1L. Tagging of C7L in this way allowed us to detect the fusion protein by immunoprecipitation with antibodies against the K1L protein. Furthermore, the hybird protein retained its biological properties. The recombinant viruses constructed in this work should be useful for studies of the molecular basis of the activity of viral host range proteins.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error