1887

Abstract

The herpes simplex virus type 1 (HSV-1) mutant 1814 lacks the ability to trans-activate immediate early gene transcription and enter lytic replication but it can establish and reactivate from latency. We therefore investigated the number of neurons that expressed latency-associated transcripts (LATs) in animals latently infected with 1814, the rescued revertant (1814R), or wild-type (wt) HSV-1. The percentage of LAT neurons increased with increasing doses of each of the viruses. After inoculation of equal amounts of infectious virus many more LAT neurons were observed in animals infected with 1814 than with 1814R or wt HSV-1. Whereas the LAT neurons in animals infected with 1814R or wt HSV-1 were largely confined to lumbar dorsal root ganglia (DRG) L4/L5/L6 (those which innervate the lower leg), in animals infected with 1814 they were also present in DRG not directly involved with such innervation (thoracic 12 and 13, L1, L2 and L3). We concluded that the large number of LAT neurons observed with 1814 was related to the high particle numbers in the inoculum and that spread of virus was related to limited replication as well as to the low neurovirulence of 1814. This spread was not unique to 1814 but when it occurred with more virulent viruses such as 1814R or wt HSV-1, it resulted in the death of the host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-6-985
1993-06-01
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/6/JV0740060985.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-6-985&mimeType=html&fmt=ahah

References

  1. Ace C. I., McKee T. A., Ryan J. M., Cameron J. M., Preston C. M. 1989; Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. Journal of Virology 63:2260–2269
    [Google Scholar]
  2. Anderson J. R., Field H. J. 1983; The distribution of herpes simplex type 1 antigen in mouse central nervous system after different routes of inoculation. Journal of Neurological Sciences 60:181–195
    [Google Scholar]
  3. Block T. M., Spivack J. G., Steiner I., Deshmane S., McIntosh M. T., Lirette R. P., Fraser N. W. 1990; A herpes simplex virus type 1 latency-associated transcript mutant reactivates with normal latencies from latent infection. Journal of Virology 64:3417–3426
    [Google Scholar]
  4. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  5. Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe K. M. 1989; Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proceedings of the National Academy of Sciences, U.S.A. 86:4736–4740
    [Google Scholar]
  6. Cook M. L., Stevens J. G. 1976; Latent herpetic infections following experimental viraemia. Journal of General Virology 31:75–80
    [Google Scholar]
  7. Croen K. D., Ostrove J. M., Dragovic L. J., Smialek J. E., Straus S. E. 1987; Latent herpes simplex virus in human trigeminal ganglia. New England Journal of Medicine 317:1427–1432
    [Google Scholar]
  8. Deatly A. M., Spivack J. G., Lavi E., Fraser N. W. 1987; RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proceedings of the National Academy of Sciences, U.S.A. 84:3204–3208
    [Google Scholar]
  9. Efstathiou S., Minson A. C., Field H. J., Anderson J. R., Wildy P. 1986; Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. Journal of Virology 57:446–455
    [Google Scholar]
  10. Farrell M. J., Dobson A. T., Feldman L. T. 1991; Herpes simplex virus latency-associated transcript is a stable intron. Proceedings of the National Academy of Sciences, U.S.A. 88:790–794
    [Google Scholar]
  11. Galloway D. A., Fenoglio C., Shevchuk M., McDougall J. K. 1979; Detection of herpes simplex RNA in human sensory ganglia. Virology 95:265–268
    [Google Scholar]
  12. Goding C. R., O’Hare P. 1989; Herpes simplex virus Vmw65-octamer binding protein interaction: a paradigm for combinatorial control of transcription. Virology 173:363–367
    [Google Scholar]
  13. Gordon Y. J., Johnson B., Romanowski E., Araullo-Cruz T. 1988; RNA complementary to herpes simplex virus type 1 ICP0 gene demonstrated in neurons of human trigeminal ganglia. Journal of Virology 62:1832–1835
    [Google Scholar]
  14. Greene E. C. 1959; Anatomy of the rat. Transactions of the American Philosophical Society 27:1959
    [Google Scholar]
  15. Griffiths I. R., Mitchell L. S., McPhilemy K., Morrison S., Kyriakides E., Barrie J. A. 1989; Expression of myelin protein genes in Schwann cells. Journal of Neurocytology 18:345–352
    [Google Scholar]
  16. Harris R. A., Preston C. M. 1991; Establishment of latency in vitro by the herpes simplex virus type 1 mutant in1814. Journal of General Virology 72:907–913
    [Google Scholar]
  17. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., Stevens J. G. 1990; Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174:117–125
    [Google Scholar]
  18. Ho D. Y., Mocarski E. S. 1989; Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proceedings of the National Academy of Sciences, U.S.A. 86:7596–7600
    [Google Scholar]
  19. Izumi K. M., McKelvey A. M., Devi-Rao G., Wagner E. K., Stevens J. G. 1989; Molecular and biological characterization of a type 1 herpes simplex virus (HSV-1) specifically deleted for expression of the latency-associated transcript (LAT). Microbial Pathogenesis 1:121–134
    [Google Scholar]
  20. Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. 1988; A herpes simplex virus transcript abundant in latently infected neurons is dispensible for establishment of the latent state. Virology 166:254–257
    [Google Scholar]
  21. Katz J. P., Bodin E. T., Coen D. M. 1990; Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication competent mutants. Journal of Virology 64:4288–1295
    [Google Scholar]
  22. Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. 1989a; A deletion mutant of the latency-associated transcript of herpes simplex virus 1 reactivates from the latent state with reduced frequency. Journal of Virology 63:2893–2900
    [Google Scholar]
  23. Leib D. A., Coen D. M., Bogard C. L., Chicks K. A., Yager D. R., Knipe D. M., Tyler K. L., Schaffer P. A. 1989b; Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. Journal of Virology 63:759–768
    [Google Scholar]
  24. McFarlane M., Daksis J. I., Preston C. M. 1992; Hexame-thylene bisacetamide stimulates herpes simplex virus immediate early gene expression in the absence of trans-induction by Vmw65. Journal of General Virology 73:285–292
    [Google Scholar]
  25. Maddox P. H., Jenkins D. 1987; 3-Aminopropyltriethoxysilane (APES): a new advance in section adhesion. Journal of Clinical Pathology 40:1256–1260
    [Google Scholar]
  26. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  27. Perry L. J., Rixon F. J., Everett R. D., Frame M. C., McGeoch D. J. 1986; Characterization of the IE110 gene of herpes simplex virus type 1. Journal of General Virology 67:2365–2380
    [Google Scholar]
  28. Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgard J. R., Wechsler S. L. 1987; Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. Journal of Virology 61:3820–3826
    [Google Scholar]
  29. Rock D., Lokensgard J., Lewis T., Kutish G. 1992; Characterization of dexamethasone-induced reactivation of latent bovine herpes virus 1. Journal of Virology 66:2484–2490
    [Google Scholar]
  30. Rodahl E., Stevens J. G. 1992; Differential accumulation of herpes simplex virus type 1 latency-associated transcripts in sensory and autonomic ganglia. Virology 189:385–388
    [Google Scholar]
  31. Sawtell N. M., Thompson R. L. 1992; Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. Journal of Virology 66:2157–2169
    [Google Scholar]
  32. Simmons A., Slobedman B., Speck P., Arthur J., Efstathiou S. 1992; Two patterns of persistence of herpes simplex virus DNA sequences in the nervous systems of latently infected mice. Journal of General Virology 73:1287–1291
    [Google Scholar]
  33. Speck P. G., Simmons A. 1991; Divergent molecular pathways of productive and latent infection with a virulent strain of herpes simplex virus type 1. Journal of Virology 65:4001–1005
    [Google Scholar]
  34. Spivack J. G., Fraser N. W. 1987; Detection of herpes simplex virus type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  35. Spivack J. G., Woods G. M., Fraser N. W. 1991; Identification of a novel latency specific splice donor signal within the herpes simplex virus type 1 2.0 kilobase latency-associated transcript (LAT): translation inhibition of LAT open reading frames by the intron within the 2.0 kilobase LAT. Journal of Virology 65:6800–6810
    [Google Scholar]
  36. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. 1989; Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EM BO Journal 8:505–511
    [Google Scholar]
  37. Steiner I., Spivack J. G., Deshmane S. L., Ace C. L., Preston C. M., Fraser N. W. 1990; A herpes simplex virus type 1 mutant containing a non-transducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. Journal of Virology 64:1630–1638
    [Google Scholar]
  38. Stevens J. G. 1989; Herpes simplex virus latency analyzed by in situ hybridization. Current Topics in Microbiology and Immunology 143:1–8
    [Google Scholar]
  39. Stevens J. G., Cook M. L. 1971; Latent herpes simplex virus in spinal ganglia of mice. Science 173:843–845
    [Google Scholar]
  40. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus a gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  41. Tenser R. B., Ham K. A., Edris W. A. 1989; Latency-associated transcript but not reactivatable virus is present in sensory ganglion neurons after inoculation of thymidine kinase-negative mutants of herpes simplex virus type 1. Journal of Virology 63:2861–2865
    [Google Scholar]
  42. Trousdale M. D., Steiner I., Spivack J. G., Deshmane S. L., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. 1991; In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcription variant in a rabbit eye model. Journal of Virology 65:6989–6993
    [Google Scholar]
  43. Ugolini G., Kuypers H. G. J. M., Strick P. L. 1989; Transneuronal transfer of herpes virus from peripheral nerves to cortex and brainstem. Science 243:89–91
    [Google Scholar]
  44. Valyi-Nagy T., Deshmane S. L., Spivack J. G., Steiner I., Ace C. L., Preston C. M., Fraser N. W. 1991; Investigation of herpes simplex virus type 1 (HSV-1) gene expression and DNA synthesis during the establishment of latent infection by an HSV-1 mutant, ml814, that does not replicate in mouse trigeminal ganglia. Journal of General Virology 72:641–649
    [Google Scholar]
  45. Wagner E. K., Flanagan M. W., Devi-Rao G., Zhang Y. F., Hill J. M., Anderson K. P., Stevens J. G. 1988; The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. Journal of Virology 62:4577–4585
    [Google Scholar]
  46. Wechsler S. L., Nesburn A. B., Watson R., Slanina S., Ghiasi H. 1988; Fine mapping of the major latency-related RNA of herpes simplex virus type 1 in humans. Journal of General Virology 69:3101–3106
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-74-6-985
Loading
/content/journal/jgv/10.1099/0022-1317-74-6-985
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error