1887

Abstract

To investigate the mechanism of kinetic action and substrate recognition of varicella-zoster virus (VZV) thymidine kinase (TK), we designed and isolated a site-directed mutant VZV TK which has double amino acid substitutions, threonine to leucine and isoleucine to leucine (SDM TK). This mutant was designed to alter the substrate-binding site of the VZV TK to duplicate that of the herpes simplex virus type 2 enzyme. Kinetic studies of the activity of wild-type TK indicated that the binding order of ATP and thymidine is random and that wild-type VZV TK possessed high thymidylate kinase (TM-K) activity. The sensitivity of VZV TK to bisubstrate analogues, dinucleotides of adenosine and thymidine, showed that the optimum distance between the ATP- and substrate-binding sites is two phosphoryl groups greater than with the natural substrate for TK activity. SDM TK lost deoxycytidine kinase activity and had reduced TK and TM-K activities. Inhibition studies on both WT and SDM TK by 5-halogenovinyluridine analogues and their 5′ monophosphate derivatives revealed that amino acids at positions 136 and 137 are involved in substrate binding, probably through a role in the formation of the binding pocket for bulky substrates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-6-1011
1993-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/6/JV0740061011.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-6-1011&mimeType=html&fmt=ahah

References

  1. Amzel L. M., Pedersen P. L. 1983; Proton ATPases: structure and mechanism. Annual Review of Biochemistry 52:801–824
    [Google Scholar]
  2. Ayisi N. K., Wall R. A., Wanklin R. J., Machida H., De Clercq E., Sacks S. L. 1987; Comparative metabolism of E-5-(2-bromovinyl)-2′-deoxyuridine and l-β-d-arabinofuranosyl-E-5-(2-bromovinyl)uracil in herpes simplex virus-infected cells. Molecular Pharmacology 31:422–429
    [Google Scholar]
  3. Balasubramaniam N. K., Veerisetty V., Gentry G. A. 1990; Herpesviral deoxythymidine kinases contain a site analogous to the phosphoryl-binding arginine-rich region of porcine adenylate kinase; comparison of secondary structure predictions and conservation. Journal of General Virology 71:2979–2987
    [Google Scholar]
  4. Chen M. S., Prusoff W. H. 1978; Association of thymidylate kinase activity with pyrimidine deoxyribonucleoside kinase induced by herpes simplex virus. Journal of Biological Chemistry 253:1325–1327
    [Google Scholar]
  5. Chen M. S., Walker J., Prusoff W. H. 1979; Kinetic studies of herpes simplex virus type 1-encoded thymidine and thymidylate kinase, a multifunctional enzyme. Journal of Biological Chemistry 254:10747–10753
    [Google Scholar]
  6. Chen M. S., Amico L. A., Speelman D. J. 1984; Kinetics of the interaction of monophosphates of the antiviral nucleosides 2′-fluoro-1-β-d-arabinofuranosylpyrimidine and (E)-5-(2-bromovinyl)-2′-deoxyuridine with thymidylate kinases from Vero cells and herpes simplex virus types 1 and 2. Antimicrobial Agents and Chemotherapy 26:778–780
    [Google Scholar]
  7. Cheng Y.-C., Tsou T. Y., Hackstadt T., Malla via L. P. 1979; Induction of thymidine kinase and DNase in varicella-zoster virus-infected cells and kinetic properties of the virus-induced thymidine kinase. Journal of Virology 31:172–177
    [Google Scholar]
  8. Cheng Y.-C., Dutschman G., De Clercq E., Jones A. S., Rahim S. G., Verhelst G., Walker R. T. 1981; Differential affinities of 5-(2-halogenovinyl)-2′-deoxyuridines for deoxythymidine kinases of various origins. Molecular Pharmacology 20:230–233
    [Google Scholar]
  9. Darby G., Larder B. A., Inglis M. M. 1986; Evidence that the ‘active centre’ of the herpes simplex virus thymidine kinase involves an interaction between three distinct regions of the polypeptide. Journal of General Virology 67:753–758
    [Google Scholar]
  10. Davies L. C., Stock J. A., Barrie S. E., Orr R. M., Harrap K. R. 1988; Dinucleotide analogues as inhibitors of thymidine kinase, thymidylate kinase, and ribonucleotide reductase. Journal of Medical Chemistry 31:1305–1308
    [Google Scholar]
  11. Dixon M., Webb E. C. 1964 Enzymes, 2nd edn. pp. 71–81 New York: Academic Press;
    [Google Scholar]
  12. Fyfe J. A. 1982; Differential phosphorylation of (E)-5-(2-bromovinyl)-2′-deoxyuridine monophosphate by thymidylate kinases from herpes simplex viruses types 1 and 2 and varicella zoster virus. Molecular Pharmacology 21:432–437
    [Google Scholar]
  13. Fyfe J. A., Keller P. M., Furman P. A., Miller R. L., Elion G. B. 1978; Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)-guanine. Journal of Biological Chemistry 253:8721–8727
    [Google Scholar]
  14. Gentry G. A., Allen G. P., Holton R., Nevins R. B., McGowan J. J., Veerisetty V. 1983; Thymine salvage, mitochondria, and the evolution of the herpesviruses. Intervirology 19:67–76
    [Google Scholar]
  15. Harrison P. T., Thompson R., Davison A. J. 1991; Evolution of herpesvirus thymidine kinases from cellular deoxycytidine kinase. Journal of General Virology 72:2583–2586
    [Google Scholar]
  16. Hay J., Perera P. A. J., Morrison J. M., Gentry G. A., Subak-Sharpe J. H. 1971; Herpesvirus-specified proteins. In Strategy of the Viral Genome (Ciba Foundation Symposium pp. 355–376 Edited by Wolstenholme G. E. W., O’Connor M. Edinburgh: Churchill Livingstone;
    [Google Scholar]
  17. Honess R. W., Craxton M. A., Williams L., Gompels U. A. 1989; A comparative analysis of the sequence of the thymidine kinase gene of a gammaherpesvirus, herpesvirus saimirl. Journal of General Virology 70:3003–3013
    [Google Scholar]
  18. Karlstrom A. R., Gronowitz J. S. 1987; An optimized thymidylate kinase assay, based on enzymatically synthesized 5-[125I]iododeoxyuridine monophosphate and its application to an immunological study of herpes simplex virus thymidine-thymidylate kinases. Analytical Biochemistry 162:500–510
    [Google Scholar]
  19. Kit S. 1985; Thymidine kinase. Microbiological Sciences 2:369–375
    [Google Scholar]
  20. Lacey S. F., Suzutani T., Powell K. L., Purifoy D. J. M., Honess R. W. 1991; Analysis of mutations in the thymidine kinase genes of drug-resistant varicella-zoster virus populations using the polymerase chain reaction. Journal of General Virology 72:623–630
    [Google Scholar]
  21. Robertson G. R., Whalley J. M. 1988; Evolution of the herpes thymidine kinase: identification and comparison of the equine herpesvirus 1 thymidine kinase gene reveals similarity to a cell-encoded thymidylate kinase. Nucleic Acids Research 16:11303–11317
    [Google Scholar]
  22. Shiraki K., Ogino T., Yamanishi K., Takahashi M. 1985; Immunochemical characterization of pyrimidine kinase induced by varicella-zoster virus. Journal of General Virology 66:221–229
    [Google Scholar]
  23. Smith G. L., De Carlos A., Chan Y. S. 1989; Vaccinia virus encodes a thymidylate kinase gene: sequence and transcriptional mapping. Nucleic Acids Research 17:7581–7590
    [Google Scholar]
  24. Suzutani T., Machida H., Sakuma T. 1988a; Efficacies of antiherpesvirus nucleosides against two strains of herpes simplex virus type 1 in Vero and human embryo lung fibroblast cells. Antimicrobial Agents and Chemotherapy 32:1046–1052
    [Google Scholar]
  25. Suzutani T., Machida H., Sakuma T., Azuma M. 1988b; Effects of various nucleosides on antiviral activity and metabolism of 1 -β-d-arabinofuranosyl-E-5-(2-bromovinyl)uracil against herpes simplex virus types 1 and 2. Antimicrobial Agents and Chemotherapy 32:1547–1551
    [Google Scholar]
  26. Suzutani T., Lacey S. F., Powell K. L., Purifoy D. J. M., Honess R. W. 1992; Random mutagenesis of the thymidine kinase gene of varicella-zoster virus. Journal of Virology 66:2118–2124
    [Google Scholar]
  27. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences, V.S.A 82:1074–1078
    [Google Scholar]
  28. Veerisetty V., Balasubramaniam N. K., Gentry G. A. 1990; Equine herpes virus 1 and pseudorabies virus resistance to 2′-fluoropyrimidine analogs and to bromovinyldeoxyuridine: implications for dTMP kinase activity. Acta virologica 34:568–573
    [Google Scholar]
  29. Yokota T., Konno K, Mori S., Shigeta S., Kumagai M., Watanabe Y., Machida H. 1989; Mechanism of selective inhibition of varicella zoster virus replication by 1-/I-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil. Molecular Pharmacology 36:312–316
    [Google Scholar]
  30. Zhang H., Scholl R., Browse J., Somerville C. 1988; Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Research 16:1220
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-6-1011
Loading
/content/journal/jgv/10.1099/0022-1317-74-6-1011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error