1887

Abstract

We report the first complete nucleotide sequence of the picornavirus coxsackievirus B5 (CB5), strain 1954/UK/85, an isolate from a case of hand-foot-and-mouth disease. We have compared the sequence with those of other coxsackie B viruses, coxsackievirus A9, poliovirus and swine vesicular disease virus (SVDV). The genes encoding the three major capsid proteins are most closely related to those of SVDV but the 5′ and 3′ non-coding regions and the P3 gene are more similar to the corresponding regions in the other coxsackie B viruses than to those of SVDV. These observations are considered in the light of the antigenic and biochemical relationships between SVDV and CB5.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-5-845
1993-05-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/5/JV0740050845.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-5-845&mimeType=html&fmt=ahah

References

  1. Brown F., Wild F. 1974; Variation in the coxsackievirus type B5 and its possible role in the etiology of swine vesicular disease. Intervirology 3:125–128
    [Google Scholar]
  2. Brown F., Talbot P., Burrows R. 1973; Antigenic differences between isolates of swine vesicular disease virus and their relationship to coxsackie B5 virus. Nature, London 245:315–316
    [Google Scholar]
  3. Brown F., Goodridge D., Burrows R. 1976a; Infection of man by swine vesicular disease virus. Journal of Comparative Pathology 86:409–114
    [Google Scholar]
  4. Brown F., Wild T. F., Rowe L. W., Underwood B. O., Harris T. J. R. 1976b; Comparison of swine vesicular disease virus and coxsackie B5 virus by serological and RNA hybridization methods. Journal of General Virology 31:231–237
    [Google Scholar]
  5. Chang K. H., Auvinen P., Hyypiä T., Stanway G. 1989; The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. Journal of General Virology 70:3269–3280
    [Google Scholar]
  6. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  7. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research 16:10881–10890
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  9. Filman D. J., Syed R., Chow M., MacAdam A. J., Minor P. D., Hogle J. M. 1989; Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO Journal 8:1567–1579
    [Google Scholar]
  10. Garland A. J. M., Mann J. A. 1974; Attempts to infect pigs with coxsackie virus type B5. Journal of Hygiene 73:85–96
    [Google Scholar]
  11. Graves J. H. 1973; Serological relationships of swine vesicular disease virus and coxsackie B5 virus. Nature, London 245:314–315
    [Google Scholar]
  12. Harris T. J. R., Doel T. R., Brown F. 1977; Molecular aspects of the antigenic variation of swine vesicular disease and coxsackie B5 viruses. Journal of General Virology 35:299–315
    [Google Scholar]
  13. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  14. Hogle J. M., Chow M., Filman D. J. 1985; Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:1358–1365
    [Google Scholar]
  15. Hughes P. J., Evans D. M. A., Minor P. D., Schild G. C., Almond J. W., Stanway G. 1986; The nucleotide sequence of a type 3 poliovirus isolated during a recent outbreak of poliomyelitis in Finland. Journal of General Virology 67:2093–2102
    [Google Scholar]
  16. Iizuka N., Kuge S., Nomoto A. 1987; Complete nucleotide sequence of the genome of coxsackievirus Bl. Virology 156:64–73
    [Google Scholar]
  17. Inoue T., Suzuki T., Sekiguchi K. 1989; The complete nucleotide sequence of swine vesicular disease virus. Journal of General Virology 70:919–934
    [Google Scholar]
  18. Kew O., Nottay B. K. 1984 Evolution of the oral polio vaccine strains in humans occurs by both mutation and intermolecular recombination. In Molecular and Chemical Basis of Virus Virulence and Immunogenicity, Modern Approaches to Vaccines, vol. 2 pp. 357–362 Edited by Chanock R. M., Lerner R. A. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., van der Werf S., Anderson C. W., Wimmer E. 1981; Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature, London 291:547–553
    [Google Scholar]
  20. Lai S. S., McKercher P. D., Moore D. M., Gillespie J. H. 1980; Response of pigs to recent isolates of coxsackievirus B5. Comparative Immunology, Microbiology and Infectious Diseases 2:459–168
    [Google Scholar]
  21. Lipskaya G. Y., Muzychenko A. R., Kutitova O. K., Maslova S. V., Equestre M., Drozdov S. G., Perez-Bercoff R., Agol V. I. 1991; Frequent isolation of intertypic poliovirus recombinants with serotype-2 specificity from vaccine-associated polio cases. Journal of Medical Virology 35:290–296
    [Google Scholar]
  22. McCauley J. W., Penn C. R. 1990; The critical cut-off temperature of avian influenza viruses. Virus Research 17:191–198
    [Google Scholar]
  23. Monlux W. S., McKercher P. D., Graves J. H. 1975; Brain and spinal cord lesions in pigs inoculated with swine vesicular disease (UKG strain) virus and coxsackievirus B5. American Journal of Veterinary Research 36:1745–1749
    [Google Scholar]
  24. Pallansch M. A., Freeman C. Y. 1987 Genetic variation and phylogenetic relationships among coxsackie B virus isolates and identification of conserved sequences as targets for pan-enterovirus oligonucleotide probes. Abstract No. R16.25, 7th International Congress of Virology, Edmonton, Canada, August 1987
    [Google Scholar]
  25. Pilipenko E. V., Blinov V. M., Romanova L. L., Sinyakov A. N., Maslova S. V., Agol V. I. 1989; Conserved structural domains in the 5′ untranslated region of picomaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology 168:201–209
    [Google Scholar]
  26. Racaniello V. R., Baltimore D. 1981; Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proceedings of the National Academy of Sciences, U.S.A. 78:4887–4891
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74:5463–5467
    [Google Scholar]
  28. Seechurn P., Knowles N. J., McCauley J. W. 1990; The complete nucleotide sequence of a pathogenic swine vesicular disease virus. Virus Research 16:255–274
    [Google Scholar]
  29. Skinner M. A., Racaniello V. R., Dunn G., Cooper J., Minor P. D., Almond J. W. 1989; New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that show that RNA secondary structure is important in neuro virulence. Journal of Molecular Biology 207:379–392
    [Google Scholar]
  30. Staden R. 1987 Computer handling of DNA sequencing projects. In Nucleic Acid and Protein Sequence Analysis: A Practical Approach pp. 173–217 Edited by Bishop M. J., Rawlings C. J. Oxford: IRL Press;
    [Google Scholar]
  31. Watson C. J., Jackson J. F. 1985 An alternative procedure for the synthesis of double-stranded cDNA for cloning in phage and plasmid vectors. In DNA Cloning: A Practical Approach vol. 1 pp. 79–88 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  32. Werner G., Rosenwirth B., Baurer E., Seifert J.-M., Werner F.-J., Besemer J. 1986; Molecular cloning and sequence determination of the genomic regions encoding protease and genome-linked protein of three picornaviruses. Journal of Virology 57:1084–1093
    [Google Scholar]
  33. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-74-5-845
Loading
/content/journal/jgv/10.1099/0022-1317-74-5-845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error