1887

Abstract

Integration of human papillomaviruses (HPVs) into the host genome is considered to be an early and important event in HPV-linked cervical carcinogenesis. Consequently, the viral DNA potentially becomes a target for cellular control mechanisms normally acting on the corresponding integration site. Besides resulting position effects, host-specific DNA methylation may play a functional role in HPV gene regulation. To elucidate the influence of such a kind of epigenetic modification on viral transcription, methylation studies on HPV-18 upstream regulatory region (URR)-controlled reporter plasmids were carried out. Selective methylation of the viral URR results in a down-regulation of the transcriptional activity, which can be attributed to non-random distribution of methyl-acceptor sites clustered within the constitutive enhancer region. competition experiments show that suppression is not directly mediated by steric hindrance of methyl residues with transcription factors, but rather is due to the association with methyl-CpG DNA-binding proteins. Using a restriction enzyme accessibility assay on both the DNA and chromatin levels, it could be demonstrated that, , extensively methylated viral DNA is nucleosomally organized, characteristic of transcriptionally inactive chromatin. These data suggest that DNA methylation is an important regulatory pathway in the modulation of HPV expression and as a consequence the proliferation rate of virus-infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-5-791
1993-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/5/JV0740050791.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-5-791&mimeType=html&fmt=ahah

References

  1. Almer A., Hörz W. 1986; Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PH03/PH05 locus in yeast. EMBO Journal 5:2681–2687
    [Google Scholar]
  2. Antequera F., Macleod D., Bird A. 1989; Specific protection of methylated CpGs in mammalian nuclei. Cell 58:509–517
    [Google Scholar]
  3. Antequera F., Boyes J., Bird A. P. 1990; High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 72:503–514
    [Google Scholar]
  4. Aviv H., Leder P. 1972; Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proceedings of the National Academy of Sciences, U.S.A. 64:1408–1412
    [Google Scholar]
  5. Baker C. C., Phelps W. C., Lindgren V., Braun M. J., Gonda M. A., Howley P. M. 1987; Structural and transcriptional analysis of human papillomavirus type 16 in cervical carcinoma cell lines. Journal of Virology 61:962–971
    [Google Scholar]
  6. Barr F. G., Davis R. J., Eichenfield L., Emanuel B. S. 1992; Structural analysis of a carcinogen-induced genomic rearrangement event. Proceedings of the National Academy of Sciences, U.S.A. 89:942–946
    [Google Scholar]
  7. Bednarik D. P., Cook J. A., Pitha P. M. 1990; Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO Journal 9:1157–1164
    [Google Scholar]
  8. Ben-Hattar J., Beard P., Jiricny J. 1989; Cytosine methylation in CTF and Spl recognition sites of an HSV tk promoter: effects on transcription in vivo and on factor binding in vitro. Nucleic Acids Research 17:10179–10190
    [Google Scholar]
  9. Bernard B. A., Bailly C., Lenoir M.-C., Darmon M., Thierry F., Yaniv M. 1989; The human papillomavirus type 18 (HPV 18) E2 gene product is a repressor of the HPV 18 regulatory region in human keratinocytes. Journal of Virology 63:4317–4324
    [Google Scholar]
  10. Bosch F. X., Schwarz E., Boukamp P., Fusenig N. E., Bartsch D., zur Hausen H. 1990; Suppression in vivo of human papillomavirus type 18 E6-E7 gene expression in non-tumorigenic HeLa-fibroblast hybrid cells. Journal of Virology 64:4743–4754
    [Google Scholar]
  11. Boyes J., Bird A. 1991; DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134
    [Google Scholar]
  12. Boyes J., Bird A. 1992; Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO Journal 11:327–333
    [Google Scholar]
  13. Buschhausen G., Wittig B., Graessmann M., Graessmann A. 1987; Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase. Proceedings of the National Academy of Sciences, U.S.A. 84:1177–1181
    [Google Scholar]
  14. Chan W.-K., Klock G., Bernard H.-U. 1989; Progesterone and glucocorticoid response elements occur in the long control regions of several human papillomaviruses involved in anogenital neoplasia. Journal of Virology 63:3261–3269
    [Google Scholar]
  15. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium-thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  16. Choo K. B., Pan C. C., Han S. M. 1987; Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. Virology 161:259–261
    [Google Scholar]
  17. Christy B. A., Scangos G. A. 1986; In vitro methylation of bovine papillomavirus alters its ability to transform mouse cells. Molecular and Cellular Biology 6:2910–2915
    [Google Scholar]
  18. Cole S. T., Danos O. 1987; Nucleotide sequence and comparative analysis of human papillomavirus type 18 genome. Journal of Molecular Biology 193:599–608
    [Google Scholar]
  19. de Wet J. R., Wood K. V., Deluca M., Helinski D. R., Subramani S. 1987; Firefly luciferase gene: structure and expression in mammalian cells. Molecular and Cellular Biology 7:725–737
    [Google Scholar]
  20. Doerfler W. 1991; Patterns of DNA methylation - evolutionary vestiges of foreign DNA inactivation as a host defence mechanism. Biological Chemistry Hoppe-Seyler 372:557–564
    [Google Scholar]
  21. Dürst M., Kxeinheinz A., Hotz M., Gissmann L. 1985; The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. Journal of General Virology 66:1515–1522
    [Google Scholar]
  22. Dürst M., Petrussevska R. T., Boukamp P., Fusenig N. E., Gissmann L. 1987; Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus 16 DNA. Oncogene 1:251–256
    [Google Scholar]
  23. Elgin S. C. R. 1984; Anatomy of hypersensitive sites. Nature, London 309:213–214
    [Google Scholar]
  24. Feinberg A., Vogelstein B. 1983; Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, London 301:89–91
    [Google Scholar]
  25. Feinberg A., Vogelstein B. 1984; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 137:266–267
    [Google Scholar]
  26. Gorman C. M., Moffat L. F., Howard B. 1982; Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  27. Holliday R. 1987; The inheritance of epigenetic defects. Science 238:163–170
    [Google Scholar]
  28. Hoppe-Seyler F., Butz K. 1993; A novel cis-stimulatory element maps to the 5′ portion of the human papillomavirus type 18 upstream regulatory region and is functionally dependent on a sequence-aberrant Spl binding site. Journal of General Virology 74:281–286
    [Google Scholar]
  29. Jähner D., Jaenisch R. 1985; Retrovirus-induced do novo methylation of flanking host sequences correlates with gene inactivity. Nature, London 315:584–587
    [Google Scholar]
  30. Keller W. 1975; Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proceedings of the National Academy of Sciences, U.S.A. 72:4876–4880
    [Google Scholar]
  31. Keshet I., Lieman-Hurwitz J., Cedar H. 1986; DNA methylation affects the formation of active chromatin. Cell 44:535–543
    [Google Scholar]
  32. Khandjian E. W., Meric C. 1986; A procedure for Northern blot analysis of native RNA. Analytical Biochemistry 159:227–232
    [Google Scholar]
  33. Klein C. B., Conway K., Wang X. W., Bhambra R. K., Lin X., Cohen M. D., Annab L., Barrett J. C., Costa M. 1991; Senescence of nickel-transformed cells by an × chromosome: possible epigenetic control. Science 251:796–799
    [Google Scholar]
  34. Knebel-Mörsdorf D., Achten S., Langner K.-D., Roger R., Fleckenstein B., Doerfler W. 1988; Reactivation of the methylation-inhibited late E2A promoter of adenovirus type 2 by a strong enhancer of human cytomegalovirus. Virology 166:166–174
    [Google Scholar]
  35. Korba B. E., Wilson V. L., Yoakum G. H. 1985; Induction of hepatitis B virus core gene in human cells by cytosine demethylation in the promoter. Science 228:1103–1106
    [Google Scholar]
  36. Kruczek I., Doerfler W. 1983; Expression of the chloramphenicol acetyl transferase gene in mammalian cells under the control of adenovirus type 12 promoters. Effect of promoter methylation on gene expression. Proceedings of the National Academy of Sciences, U.S.A. 80:7586–7590
    [Google Scholar]
  37. Lawson G. M., Tsai M. J., O’Malley B. W. 1980; Deoxyribonuclease I sensitivity of the nontranscribed sequences flanking the 5′ and 3′ ends of the ovomucoid gene and the ovalbumin and its related X and Y genes in hen oviduct nuclei. Biochemistry 19:4403–4411
    [Google Scholar]
  38. Levine A., Cantoni G., Razin A. 1991; Inhibition of promoter activity by methylation: possible involvement of protein mediators. Proceedings of the National Academy of Sciences, U.S.A. 88:6515–6518
    [Google Scholar]
  39. Lukow B., SchÜtz G. 1987; CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Research 15:5490
    [Google Scholar]
  40. McClelland M. 1981; The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acids Research 12:5859–5866
    [Google Scholar]
  41. Masucci M. G., Contreras-Salazar B., Ragnar E., Falk K., Minarovits I., Ernberg I., Klein G. 1989; 5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkitt’s lymphoma line Rael. Journal of Virology 63:3135–3141
    [Google Scholar]
  42. Meehan R. R., Lewis J. D., McKay S., Kleiner E., Bird A. P. 1989; Identification of mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507
    [Google Scholar]
  43. MÜnger K., Phelps W. C., Bubb V., Howley P. M., Schlegel R. 1989; The E6 and E7 genes of the human papillomavirus type 16 are necessary and sufficient for transformation of primary human keratinocytes. Journal of Virology 63:4417–4423
    [Google Scholar]
  44. Murray E. J., Grosveld F. 1987; Site-specific demethylation in the promoter of human y-globin gene does not alleviate methylation mediated suppression. EMBO Journal 6:2329–2335
    [Google Scholar]
  45. Pirisi L., Yasumoto S., Feller M., Doninger J., DiPaolo J. 1987; Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. Journal of Virology 61:1061–1066
    [Google Scholar]
  46. Prendergast G. C., Lawe D., Ziff E. B. 1991; Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65:395–407
    [Google Scholar]
  47. Rachal M. J., Yoo H., Becker F. F., Lapeyre J.-M. 1989; In vitro DNA cytosine methylation of cw-regulatory elements modulates c-Ha-ras promoter activity in vivo. Nucleic Acids Research 13:5135–5147
    [Google Scholar]
  48. Razin A., Cedar H. 1991; DNA methylation and gene expression. Microbiological Reviews 55:451–458
    [Google Scholar]
  49. Reik W., Collick A., Norris M. L., Barton S. C., Surani M. A. 1987; Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, London 328:248–251
    [Google Scholar]
  50. Romanczuk H., Thierry F., Howley P. M. 1990; Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. Journal of Virology 64:2849–2859
    [Google Scholar]
  51. Rösl F., Waldeck W. 1991; Topological properties of bovine papillomavirus type 1 (BPV-1) DNA in episomal nucleoprotein complexes: a model system for chromatin organization in higher eukaryotes. Molecular Carcinogenesis 4:248–256
    [Google Scholar]
  52. Rösl F., Dürst M., Zur Hausen H. 1988; Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine. EMBO Journal 1:1321–1328
    [Google Scholar]
  53. Rösl F., Westphal E.-M., zur Hausen H. 1989; Chromatin structure and transcriptional regulation of human papillomavirus type 18 DNA in HeLa cells. Molecular Carcinogenesis 2:72–80
    [Google Scholar]
  54. Rösl F., Achtstätter T., Bauknecht T., Futterman G., Hotter K.-J., zur Hausen H. 1991; Extinction of the HPV 18 upstream regulatory region in cervical carcinoma cells after fusion with non-tumorigenic human keratinocytes under non-selective condition. EMBO Journal 10:1337–1345
    [Google Scholar]
  55. Sambrook J., Fritsch E., ManiXtis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  56. Schneider-Maunoury S., Croissant O., Orth G. 1987; Integration of human papillomavirus type 16 DNA sequences: a possible early event in the progression of genital tumors. Journal of Virology 61:3295–3298
    [Google Scholar]
  57. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature, London 314:111–114
    [Google Scholar]
  58. Smits H. L., Raadsheer E., Rood J., Mehendale S., Slazer R. M., van Der Noorda J., ter Schegget J. 1988; Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16. Journal of Virology 62:4538–1543
    [Google Scholar]
  59. Smits P. H. M., Smits H. L., Jebbink M. F., ter Schegget J. 1990; The short arm of chromosome 11 likely is involved in the regulation of the human papillomavirus type 16 early enhancer-promoter and in the suppression of the transforming activity of the viral DNA. Virology 176:158–165
    [Google Scholar]
  60. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  61. Swift F. V., Bhat K., Younghusband H. B., Hamada H. 1987; Characterization of a cell-type specific enhancer found in the human papillomavirus type 18 genome. EMBO Journal 6:1339–1344
    [Google Scholar]
  62. Van Dyke T., Finlay C., Levine A. J. 1985; A comparison of several lines of transgenic mice containing the SV 40 early genes. Cold Spring Harbor Symposia on Quantitative Biology 50:671–678
    [Google Scholar]
  63. von Knebel Doeberitz M., Bauknecht T., Bartsch D., zur Hausen H. 1991; Influence of chromosomal integration on glucocorticoid-regulated transcription of growth-stimulating papillomavirus genes E6 and E7 in cervical carcinoma cells. Proceedings of the National Academy of Sciences, U.S.A. 88:1411–1415
    [Google Scholar]
  64. Wigler M., Pellicer A., Sllverstein A., Axel R. 1978; Biochemical transfer of single-copy eukaryotic genes using total cellular DNA as donor. Cell 14:725–731
    [Google Scholar]
  65. Wilson V. L., Smith R. T., Longoria J., Liotta M. A., Harper C. M., Harris C. C. 1987; Chemical carcinogen-induced decreases in genomic 5-methyldeoxycytidine content of normal human bronchial epithelial cells. Proceedings of the National Academy of Sciences, U.S.A. 84:3298–3301
    [Google Scholar]
  66. Yee C., Krishnan-Hewlett I., Baker C. C, Schlegel R., Howley P. M. 1985; Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. American Journal of Pathology 119:361–366
    [Google Scholar]
  67. Zhang X.-Y., Supakar P. C., Khan R., Ehrlich K. C., Ehrlich M. 1989; Related sites in human and herpesvirus DNA recognized by methylated DNA-binding protein from human placenta. Nucleic Acids Research 17:1459–1474
    [Google Scholar]
  68. zur Hausen H. 1986; Intracellular surveillance of persisting viral infections: human genital cancer results from deficient cellular control of papillomavirus gene expression. Lancet ii:489–491
    [Google Scholar]
  69. zur Hausen H. 1989; Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers. Cancer Research 49:4677–4681
    [Google Scholar]
  70. zur Hausen H. 1991a; Viruses in human cancer. Science 254:1167–1173
    [Google Scholar]
  71. zur Hausen H. 1991b; Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184:9–13
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-5-791
Loading
/content/journal/jgv/10.1099/0022-1317-74-5-791
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error