1887

Abstract

We have previously demonstrated antibody-dependent enhancement of feline infectious peritonitis virus (FIPV) infection of macrophages using both virus-specific antisera and monoclonal antibodies (MAbs) to the spike (S) protein of FIPV. To increase our understanding of this phenomenon, six representative MAbs from a previously documented group of 12 enhancing MAbs were used to identify epitopes that mediate antibody-dependent enhancement of FIPV infectivity. Analysis of the results of kinetics-based competitive ELISA (K-cELISA) among these six enhancing MAbs grouped the epitopes into two clusters. Because transmissible gastroenteritis virus (TGEV) and FIPV are so closely related antigenically, we also conducted K-cELISA experiments between the FIPV MAbs and TGEV S protein-specific MAbs for which the epitopes had previously been mapped to specific sites on the TGEV S protein. Results of these assays indicated that the two FIPV epitope clusters are homologues of the previously defined TGEV S protein sites A and E/F. In addition, two TGEV S protein-specific MAbs also induced antibody-dependent enhancement of FIPV infection of macrophages. This functional cross-reactivity provides further support for the close antigenic relationship between FIPV and TGEV. Our results provide a preliminary localization of several enhancing epitopes within the amino acid sequence of the FIPV S protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-4-745
1993-04-01
2022-08-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/4/JV0740040745.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-4-745&mimeType=html&fmt=ahah

References

  1. Baines J. E. 1988 Molecular analyses of feline coronaviruses thesis Ph.D. Cornell University;
    [Google Scholar]
  2. Barlough J. E., Stoddar C. A. 1990; Feline coronaviral infections. In Infectious Diseases of the Dog and Cat pp 300–312 Edited by Greene C. E. Philadelphia: W. B. Saunders Company; In pp
    [Google Scholar]
  3. Barlough J. E., Jacobso R. H., Downin D. R., Marcell K. L., Lync T. J., Scot F. W. 1983; Evaluation of a computer-assisted, kinetics-based enzyme-linked immunosorbent assay for detection of coronavirus antibodies in cats. Journal of Clinical Microbiology 17:202–217
    [Google Scholar]
  4. Bolognesi D. P. 1989; Do antibodies enhance the infection of cells by HIV?. Nature, London 340:431–432
    [Google Scholar]
  5. Corapi W. V., Olse C. W., Scot F. W. 1992; Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus. Journal of Virology 66:6695–6705
    [Google Scholar]
  6. Corre I., Jimene G., Sune C., Bullid M. J., Enjuane L. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Research 10:77–94
    [Google Scholar]
  7. Correa I., Gebaue F., Sune C., Bullid M. J., Sune C., Baa M. FD., Zwaagstr K. A., Posthumu W. PA., Lenstr J. A., Enjuane L. 1990; Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. Journal of General Virology 71:271–279
    [Google Scholar]
  8. Delma B., Gelf J., Laud H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  9. Delma B., Rasschaer D., Gode M., Gelf J., Laude H. 1990; Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of the spike glycoprotein S. Journal of General Virology 71:1313–1323
    [Google Scholar]
  10. Garwes D. J., Stewar F., Ellema C. J. 1987; Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. Advances in Experimental Medicine and Biology 218:509–515
    [Google Scholar]
  11. Gebauer F., Posthumu W. PA., Correa I., Sun C., Smerdo C., Sanche C. M., Lenstr J. A., Meloe R. H., Enjuane L. 1991; Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology 183:225–238
    [Google Scholar]
  12. Halstead S. B. 1987; Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Reviews of Infectious Diseases 11:S830–S839
    [Google Scholar]
  13. Hohdatsu T., Nakamur M., Ishizuka Y., Yamada H., Koyama H. 1991a; A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Archives of Virology 120:207–217
    [Google Scholar]
  14. Hohdatsu T., Okad S., Koyama H. 1991b; Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Archives of Virology 117:85–95
    [Google Scholar]
  15. Homsy J., Meyer M., Lev J. A. 1990; Serum enhancement of human immunodeficiency virus (HIV) infection correlates with disease in HIV-infected individuals. Journal of Virology 64:1437–1440
    [Google Scholar]
  16. Horzinek M. C., Lut H., Pederse N. C. 1982; Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses. Infection and Immunity 37:1148–1155
    [Google Scholar]
  17. Jacobs L., de Groot R. J., van der Zeijs B. AM., Horzine M. C., Spaa W. 1987; he nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV). Virus Research 8:363–371
    [Google Scholar]
  18. Jacobse-Geel H. E., Dah M. R., Horzine M. C. 1980; Isolation and characterization of feline C3 and evidence for the immune complex pathogenesis of feline infectious peritonitis. Journal of Immunology 125:1606–1610
    [Google Scholar]
  19. Jacobse-Geels H. E., Dah M. R., Horzine M. C. 1982; Antibody, immune complexes, and complement activity fluctuations in kittens with experimentally induced feline infectious peritonitis. American Journal of Veterinary Research 43:666–670
    [Google Scholar]
  20. Morens D. M., Halstea S. B. 1990; easurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. Journal of General Virology 71:2909–2914
    [Google Scholar]
  21. Olsen C. W., Scott F. W. 1991; Feline infectious peritonitis vaccination-past and present. Feline Health Topics 6:1-4–8
    [Google Scholar]
  22. Olsen C. W., Corap W. V., Ngichab C. K., Baine J. D., Scot F. W. 1992; Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. Journal of Virology 66:956–965
    [Google Scholar]
  23. Pedersen N. C., Boyl J. F. 1980; Immunologic phenomena in the effusive form of feline infectious peritonitis. American Journal of Veterinary Research 41:868–876
    [Google Scholar]
  24. Porterfield J. S. 1986; Antibody-dependent enhancement of viral infectivity. Advances in Virus Research 31:335–355
    [Google Scholar]
  25. Posthumus W. PA., Lenstr J. A., Schaape W. MM., van Nieuwstad A. P., Enjuanes L., Meloen R. H. 1990; Analysis and stimulation of a neutralizing epitope of transmissible gastroenteritis virus. Journal of Virology 64:3304–3309
    [Google Scholar]
  26. Robinson W. E. Jr, Montefior D. C., Mitchel W. M. 1988; Will antibody-dependent enhancement of HIV-1 infection be a problem with AIDS vaccines?. Lancet ii:830–831
    [Google Scholar]
  27. Sanchez C. M., Jimene G., Laviad M. D., Corre I., Sun C., Bullid M. J., Gebauer F., Smerdo C., Callebau P., Escriban J. M., Enjuane L. 1990; Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174:410–417
    [Google Scholar]
  28. Simkins R. A., Sai L. J., Wilnea P. A. 1989; Epitope mapping and the detection of transmissible gastroenteritis viral proteins in cell culture using biotinylated monoclonal antibodies in a fixed-cell ELISA. Archives of Virology 107:179–190
    [Google Scholar]
  29. Simkins R. A., Weilna P. A., Bia J., Sai L. J. 1992; Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV. American Journal of Veterinary Research 53:1253–1258
    [Google Scholar]
  30. Vennema H., de Groo R. J., Harbour D. A., Dalderu M., Gruffydd-Jone T., Horzine M. C., Spaa W. JM. 1990; Early death after feline infectious peritonitis challenge due to recombinant vaccinia virus immunization. Journal of Virology 64:1407–1409
    [Google Scholar]
  31. Vennem H., de Groo R. J., Harbour D. A., Horzine M. C., Spaa W. JM. 1991; Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology 181:327–335
    [Google Scholar]
  32. Weiss R. C., Scott F. W. 1981a; Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comparative Immunology, Microbiology, and Infectious Diseases 4:175–189
    [Google Scholar]
  33. Weiss R. C., Scott F. W. 1981b; Pathogenesis of feline infectious peritonitis: nature and development of viremia. American Journal of Veterinary Research 42:382–390
    [Google Scholar]
  34. Weiss R. C., Scott F. W. 1981c; Pathogenesis of feline infectious peritonitis: pathologic changes and immunofluorescence. American Journal of Veterinary Research 42:2036–2048
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-4-745
Loading
/content/journal/jgv/10.1099/0022-1317-74-4-745
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error