1887

Abstract

Molecular interactions between herpes simplex virus type 1 (HSV-1) and human immunodeficiency virus (HIV) were investigated in the promonocytic cell line U937. HSV-1-mediated activation was observed in transient expression assays with hybrid constructions containing the HIV long terminal repeat (LTR)-directed chloramphenicol acetyltransferase gene. Comparison of constructions that differ in the GGTCA palindrome located within the negative regulatory region of the LTR revealed four- to eightfold lower activation levels for the wild-type as compared to the mutant sequence. Three protein species, 37K, 59K/64K and 75K, that bind to the wild-type GGTCA palindrome were resolved in nuclear extracts of uninfected U937 cells by gel retardation and u.v.-crosslinking experiments. The 37K protein did not bind to the mutant palindrome sequence. However, a distinct 120K protein was detected. The 37K and 59K/64K binding proteins were not resolved in similar experiments performed with nuclear extracts from HSV-1-infected U937 cells but there was a novel p50 species that binds only to the wild-type palindrome sequence. These findings raise the possibility that interaction of these proteins at the GGTCA palindrome is involved in HSV-1-mediated regulation of the HIV LTR in U937 cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-4-715
1993-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/4/JV0740040715.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-4-715&mimeType=html&fmt=ahah

References

  1. Albrecht M. A., DeLuca N. A., Byrn R. A., Schaffer P. A., Hammer S. M. 1989; The herpes simplex virus immediate-early protein ICP4, is required to potentiate replication of human immunodeficiency virus in CD4+ lymphocytes. Journal of Virology 63:1861–1868
    [Google Scholar]
  2. Albers I., Kirchner H., Domke-Opitz I. 1989; Resistance of human blood monocytes to infection with herpes simplex virus. Virology 169:466–469
    [Google Scholar]
  3. Aurelian L., Kessler I. I. 1985; Subclinical herpes virus infections of the genital tract are commonly associated with viral shedding. Cervix 3:235–248
    [Google Scholar]
  4. Ballard D. W., Walker W. H., Doerre S., Sista P., Molitor J. A., Dixon E. P., Peffer N. J., Hannink M., Greene W. C. 1990; The v-rel oncogene encodes kcB enhancer binding protein that inhibits NF-kB function. Cell 63:803–814
    [Google Scholar]
  5. Bernstein M. S., Tong-Starksen S. E., Locksley R. M. 1991; Activation of human monocyte-derived macrophages with lipopolysaccharide decreases human immunodeficiency virus replication in vitro at the level of gene expression. Journal of Clinical Investigation 88:540–545
    [Google Scholar]
  6. Bohnlein E., Lowenthal J. W., Siekevitz M., Ballard D. W., Franza B. R., Greene W. C. 1988; The same inducible nuclear protein regulates mitogen activation of both the interleukin-2 receptor alpha gene and type 1 HIV. Cell 53:827–836
    [Google Scholar]
  7. Cooney A. J., Tsai S. Y., O’Malley B. W., Tsai M.-J. 1991; Chicken ovalbumin upstream promoter transcription factor binds to a negative regulatory region in the human immunodeficiency virus type 1 long terminal repeat. Journal of Virology 65:2853–2860
    [Google Scholar]
  8. Daniels C. A., Kleinerman E. S., Snyderman R. 1978; Abortive and productive infections of human mononuclear phagocytes by type 1 herpes simplex virus. American Journal of Pathology 91:119–129
    [Google Scholar]
  9. Feldman L. T., Impériale M. J., Nevins J. R. 1982; Activation of early adenovirus transcription by the herpesvirus immediate early gene : evidence for a common cellular control factor. Proceedings of the National Academy of Sciences, U.S.A. 79:4952–4956
    [Google Scholar]
  10. Fenyo E. M., Morfeldt-Manson L., Chiodi F. 1982; Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. Journal of Virology 62:4414–4419
    [Google Scholar]
  11. Fujita T., Shubiya H., Ohashi T., Yamanishi K., Tanigushi T. 1986; Regulation of human interleukin-2 gene: functional DNA sequences in the 5ʹ flanking region for the gene expression in activated T lymphocytes. Cell 46:401–407
    [Google Scholar]
  12. Gartner S., Markovitz P., Markovitz D., Kaplan M. H., Gallo R., Popovic M. 1986; The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219
    [Google Scholar]
  13. Gendelman H. E., Phelps W., Feigenbaum L., Ostrove J. M., Adachi A., Howley P. M., Khoury G., Ginsberg H. S., Martin M. A. 1986; Trans-activation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses. Proceedings of the National Academy of Sciences, U.S.A. 83:9759–9763
    [Google Scholar]
  14. Gimble J. M., Duh E., Ostrove J. M., Gendelman H. E., Max E. E., Rabson A. B. 1988; Activation of human immunodeficiency virus long terminal repeat by herpes simplex virus type 1 is associated with induction of a nuclear factor that binds to the NF-kB/core enhancer sequence. Journal of Virology 62:4102–4112
    [Google Scholar]
  15. Golde D. W., Groopman J. E. 1990; Production, distribution and fate of monocytes and macrophages. In Hematology pp 874–878 Edited by Williams W. J. New York & London: McGraw-Hill;
    [Google Scholar]
  16. Griffin G. E., Leung K., Folks T. M., Kundel S., Nable G. J. 1989; Activation of HIV gene expression during monocyte differentiation by induction of NF-kB. Nature 339:70–73
    [Google Scholar]
  17. Koening S., Howard E., Gendelman J. M., Orenstein M. C., Canto C. D., Pezeschkpour G. H., Yungbluth M., Janotta F., Martin M. A., Fauci A. 1986; Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1093
    [Google Scholar]
  18. Landt O., Grunert H. P., Hahn U. 1990; A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96:125–128
    [Google Scholar]
  19. LaThangue N. B., Latchman D. S. 1987; Nuclear accumulation of a heat-shock 70-like protein during herpes simplex virus replication. Bioscience Reports 1:475–483
    [Google Scholar]
  20. LaThangue N. B., Shriver K., Dawson C., Chan W. L. 1984; Herpes simplex virus infection causes the accumulation of a heat-shock protein. EMBO Journal 3:267–277
    [Google Scholar]
  21. Laurence J. 1990; Molecular interactions among herpesviruses and human immunodeficiency viruses. Journal of Infectious Diseases 162:338–346
    [Google Scholar]
  22. Linnavuori K., Hovi T. 1981; Herpes simplex virus infection in human monocyte cultures: dose-dependent inhibition of monocyte differentiation resulting in abortive infection. Journal of General Virology 52:381–385
    [Google Scholar]
  23. Lowenthal J. W., Ballard D. W., Bohnlein E., Greene W. C. 1989; Tumor necrosis factor αinduces proteins that bind specifically to kB-like enhancer elements and regulate interleukin 2 receptor α-chain gene expression in primary human T-lymphocytes. Proceedings of the National Academy of Sciences, U.S.A. 86:2331–2335
    [Google Scholar]
  24. Lu Y., Stenzel M., Sodroski J. G., Haseltine W. A. 1989; Effects of long terminal repeat mutations on human immunodeficiency virus type 1. Journal of Virology 63:4115–4119
    [Google Scholar]
  25. Lu Y., Tuzjian N., Stenzel M., Dorfman T., Sodroski J. G., Haseltine W. A. 1990; Identification of cu-acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1. Journal of Virology 64:5226–5229
    [Google Scholar]
  26. Molitor J. A., Walker W. H., Doerre S., Ballard D. W., Greene W. C. 1990; NF-kB: a family of inducible and differentially expressed enhancer-binding proteins in human T cells. Proceedings of the National Academy of Sciences, U.S.A. 87:10028–10032
    [Google Scholar]
  27. Mosca J. D., Bednarik D. P., Raj N. BK., Rosen C. A., Sodroski J. G., Haseltine W. A., Hayward G. S., Pitha P. M. 1987; Activation of human immunodeficiency virus by herpesvirus infection : identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proceedings of the National Academy of Sciences, U.S.A. 84:7408–7412
    [Google Scholar]
  28. Muesing M. A., Smith D. H., Cabradilla C. D., Benton C. V., Lasky L. A., Capon D. J. 1985; Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature, London 313:450–458
    [Google Scholar]
  29. Muesing M. A., Smith D. H., Capon D. J. 1987; Regulation of mRNA accumulation by a human immunodeficiency virus transactivator protein. Cell 48:691–701
    [Google Scholar]
  30. Nable G., Baltimore D. 1987; An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature, London 326:711–713
    [Google Scholar]
  31. Nable G., Rice S. A., Knipe D. M., Baltimore D. 1988; Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. Science 239:1299–1302
    [Google Scholar]
  32. Orchard K., Perkins N., Chapman C., Harris J., Emery V., Goodwin G., Latchman D., Collins M. 1990; A novel T-cell protein which recognizes a palindromic sequence in the negative regulatory element of the human immunodeficiency virus long terminal repeat. Journal of Virology 64:3234–3239
    [Google Scholar]
  33. Osborn L., Kunkel S., Nabel G. J. 1989; Tumor necrosis factor and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kB. Proceedings of the National Academy of Sciences, U.S.A. 86:2336–2340
    [Google Scholar]
  34. Ostrove J. M., Leonard J., Weck K. E., Rabson A. B., Gendelman H. E. 1987; Activation of human immunodeficiency virus by herpes simplex virus type 1. Journal of Virology 61:3726–3732
    [Google Scholar]
  35. Patarca R., Schwartz J., Singh R. P., Kong Q., Murphy E., Anderson Y., Sheng F. W., Singh P., Johnson K. A., Guarnagia S. M., Durfee T., Blattner F., Cantor H. 1988; Rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, U.S.A. 85:2733–2737
    [Google Scholar]
  36. Pitha P. 1990; Trans-activation of the human immunodeficiency virus (HIV) promoter by heterologous virus infection. In The Herpesviruses, Immune System and AIDS pp 289–308 Edited by Aurelian L. Boston: Kluwer Academic Publishers;
    [Google Scholar]
  37. Plaeger-Marshall S., Smith J. W. 1978; Experimental infection of a subpopulation of human peripheral blood leukocytes by herpes simplex virus. Proceedings of the Society for Experimental Biology and Medicine 158:263–268
    [Google Scholar]
  38. Poli G., Kinter A., Justement J. S., Kinter J. H., Bressler P., Stanley S., Fauci A. S. 1990; Tumor necrosis factor a functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proceedings of the National Academy of Sciences, U.S.A. 87:782–785
    [Google Scholar]
  39. Quinn T. C. 1990; Epidemiologic and serologic evidence for a role of herpesviruses in HIV infection. In The Herpesviruses, Immune System and AIDS pp 1–20 Edited by Aurelian L. Boston: Kluwer Academic Publishers;
    [Google Scholar]
  40. Read G. S., Frenkel N. 1983; Herpes simplex virus mutants defective in the virion associated shut-off of host polypeptide synthesis and exhibiting abnormal synthesis of α (immediate early) viral polypeptide. Journal of Virology 46:498–512
    [Google Scholar]
  41. Rosen C. A., Sodroski J. G., Haseltine W. A. 1985; The location of CM-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823
    [Google Scholar]
  42. Schlant R. C., Sonnenblick E. H. 1990; Normal physiology of the cardiovascular system. In The Heart vol 1 pp 35–71 Edited by Hurst J. W., Schlant R. C., Rackley C. E., Sonnenblick E. H., Wenger N. K. New York & London: McGraw-Hill;
    [Google Scholar]
  43. Siekevitz M., Josephs S. F., Dukovich M., Peffer N., Josephs M., Peffer N., Wong-Staal F., Greene W. C. 1987; Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science 238:1575–1578
    [Google Scholar]
  44. Simmonds P., Balfe P., Peutherer J. F., Ludlam C. A., Bishop P., Leigh Brown A. J. 1990; Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. Journal of Virology 64:864–872
    [Google Scholar]
  45. Sodroski J. G., Rosen C. A., Wong-Staal F., Salahuddin S. Z., Popovic M., Arya S., Gallo R. C. 1985; Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227:171–173
    [Google Scholar]
  46. Starcich B., Ratner L., Josephs S. F., Okamoto T., Gallo R. C., Wong-Staal F. 1985; Characterization of long terminal repeat sequences of HTLV-III. Science 227:538–540
    [Google Scholar]
  47. Tenney D. J., Morahan P. S. 1987; Effects of differentiation of human macrophage-like U937 cells on intrinsic resistance to herpes simplex virus type 1. Journal of Immunology 139:3076–3083
    [Google Scholar]
  48. Tenney D. J., Morahan P. S. 1991; Differentiation of the U937 macrophage cell line removes an early block of HSV-1 infection. Viral Immunology 4:91–102
    [Google Scholar]
  49. Tsai S. Y., Sagami I., Wang H., Tsai M.-J, O’Malley B. W. 1987; Interactions between a DNA-binding transcription factor (COUP) and a non-DNA binding factor (S300-II). Cell 50:701–709
    [Google Scholar]
  50. Wang L. H., Tsai S. Y., Cook R. G., Beattie W. G., Tsai M. J., O’Malley B. W. 1989; COUP transcription factor is a member of the steroid receptor superfamily. Nature, London 340:163–166
    [Google Scholar]
  51. Wymer J. P., Chung T. D., Chang Y. N., Hayward G. S., Aurelian L. 1989; Identification of immediate-early-type cis-response elements in the promoter for the ribonucleotide reductase large subunit from herpes simplex virus type 2. Journal of Virology 63:2773–2784
    [Google Scholar]
  52. Wymer J. P., Aprhys C. MJ., Chang T. D., Feng C. P., Kulka M., Aurelian L. 1992; Immediate early and functional AP-1 cis-response elements are involved in the transcriptional regulation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virus Research 23:253–270
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-4-715
Loading
/content/journal/jgv/10.1099/0022-1317-74-4-715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error