1887

Abstract

The sequences of the 3′-terminal 3∙7 kb of the genome and of a 1∙7 kb 5′ end cDNA clone of one isolate of lactate dehydrogenase-elevating virus (LDV) are reported. The 3′ end sequence encodes six major independent open reading frames (ORFs 2 to 7), which are overlapping by between one and 130 nucleotides. Each ORF is expressed at the 5′ end of one of six 3′-coterminal subgenomic mRNAs (mRNAs 2 to 7, respectively; 3∙5 to 0∙8 kb). The smallest mRNA, mRNA 7, encodes the nucleocapsid protein, VP1; mRNA 6 probably encodes the non-glycosylated envelope protein, VP2; and mRNAs 2 to 5 encode proteins of 26∙0K, 21∙5K, 19∙2K and 22∙4K, respectively, each possessing several potential -glycosylation sites and membrane-spanning segments. About 72% of the LDV genome segment carrying ORFs 2 to 7 exhibits about 50% or higher nucleotide identity with the corresponding genome segment of swine infertility and respiratory syndrome (Lelystad) virus (LV), whereas only limited similarity is observed in discontinuous regions of the same corresponding genome segments of LDV and equine arteritis virus (EAV). EAV and LV belong to the same new group of positive-strand RNA viruses as LDV. One additional subgenomic mRNA of about 4 kb is produced in LDV-but not in EAV- or LV-infected cells. The 5′ end of this mRNA (1-1) carries a continuous coding sequence. The N-terminal 80 amino acids of the predicted product exhibit about 50% identity with segments in the ORF 1b proteins of both EAV and LV. These segments are located 117 to 150 amino acids upstream of the C termini of the ORF 1b proteins of these viruses. The 5′ end cDNA clone contains part of a 5′ leader associated with all seven subgenomic mRNAs and the 5′ end of ORF 1a. The junctions between the 5′ leader and the bodies of all seven subgenomic mRNAs have been determined. Only a single junction sequence was detected for each mRNA. Linkage occurs between a 5′ UAUAACC 3′ sequence at the 3′ end of the leader and only partially identical segments specified down-stream in the genome preceding ORFs 2 to 7. The generated junctions differ for different subgenomic mRNAs but possess the consensus sequence 5′ U A CC 3′. In mRNA 7, the UA in positions 1 and 2 are derived from the leader, but a G in position 2 in mRNAs 1-1, 3 and 4 and an A in position 3 in mRNA 6 seem to be specified by the 3′ genomic sequences. Thus, the formation of these junctions is difficult to explain by a leader-primed mode of synthesis such as postulated for coronaviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-4-643
1993-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/4/JV0740040643.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-4-643&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Erickson B. W. 1986; A nonlinear measure of subalignment similarity and its significance levels. Bulletin of Mathematical Biology 48:617–632
    [Google Scholar]
  2. Baric R. S., Stohlman S. A., Lai M. MC. 1983; Characterization of replicative intermediate RNA of mouse hepatitis virus: presence of leader RNA sequences on nascent chains. Journal of Virology 48:633–640
    [Google Scholar]
  3. Brinton-Darnell M., Plagemann P. GW. 1975; Structure and chemical-physical characteristics of lactate dehydrogenase-elevating virus. Journal of Virology 16:420–433
    [Google Scholar]
  4. Cafruny W. A., Chan S. PK., Elarty J. T., Yousefi S., Kowalchyk K., McDonald D., Foreman B., Budweg G., Plagemann P. GW. 1986; Antibody response of mice to lactate dehydrogenase-elevating virus during infection and immunization with inactivated virus. Virus Research 5:357–375
    [Google Scholar]
  5. Cavanagh D., Brian D. A., Enjuanes L., Holmes K. V., Lai M. MC., Laude H., Siddell S. G., Spaan W., Taguchi F., Talbot P. J. 1990; Recommendations of the coronavirus study group for the nomenclature of the structural proteins, mRNAs and genes of coronaviruses. Virology 176:306–307
    [Google Scholar]
  6. Cech T. R. 1990; Self-splicing of group I introns. Annual Review of Biochemistry 59:543–568
    [Google Scholar]
  7. Collins M. L., Hunsaker W. R. 1985; Improved hybridization assays employing failed oligonucleotide probes: a direct comparison with 5´-end-labeled oligonucleotide probes and nick-translated plasmid probes. Analytical Biochemistry 151:211–224
    [Google Scholar]
  8. Contag C. C., Harty J. T., Plagemann P. GW. 1992; Pathogenesis of age-dependent poliomyelitis of mice. In Molecular Neurovirology pp 377–415 Edited by Roos R. P., Totowa N. J. Humana Press;
    [Google Scholar]
  9. den Boon J. A., Snijder E. J., Chirnside E. D., de Vries A. AF., Horzinek M. C., Spaan W. JM. 1991; Equine arteritis virus is not a togavirus but belongs to the coronavirus-like superfamily. Journal of Virology 65:2910–2920
    [Google Scholar]
  10. Denison M. R., Zoltick P. W., Leibowitz J. L., Pachuk C. J., Weiss S. R. 1991; Identification of polypeptides encoded in open reading frame 1b of the putative polymerase gene of the murine coronavirus mouse hepatitis virus. A59. Journal of Virology 65:3076–3082
    [Google Scholar]
  11. de Vries A. AF., Chirnside E. D., Bredenbeek P. J., Gravestein L. A., Horzinek M. C., Spaan W. JM. 1990; All subgenomic mRNAs of equine arteritis virus contain a common leader sequence. Nucleic Acids Research 18:3241–3247
    [Google Scholar]
  12. de Vries A. AF., Chirnside E. D., Horzinek M. C., Rottier P. JM. 1992; The structural proteins of equine arteritis virus. Journal of Virology 66:6294–6303
    [Google Scholar]
  13. Eckert K. A., Kunkel T. A. 1991; DNA polymerase fidelity and the polymerase chain reaction. PCR Methods and Applications 1:17–24
    [Google Scholar]
  14. Eisenberg D., Schwarz E., Komaromy M., Wall R. 1984; Analysis of membrane and surface protein sequences with the hydrophobic moment plot. Journal of Molecular Biology 179:125–142
    [Google Scholar]
  15. Godeny E. K., Werner M. R., Brinton M. A. 1989; The 3´ terminus of lactate dehydrogenase-elevating virus genome RNA does not contain togavirus or flavivirus conserved sequences. Virology 172:647–650
    [Google Scholar]
  16. Godeny E. K., Speicher D. W., Brinton M. A. 1990; Map location of lactate dehydrogenase-elevating (LDV) capsid protein (VP1) gene. Virology 177:768–771
    [Google Scholar]
  17. Gorbalenya A. E., Koonin E. V., Lai M. MC. 1991; Putative papain-related thiol proteases of positive-strand RNA viruses. FEBS Letters 2881:201–205
    [Google Scholar]
  18. Hatfield D. L., Levin J. G., Rein A. 1992; Translational suppression in retroviral gene expression. Advances in Virus Research 41:193–239
    [Google Scholar]
  19. Hofmann M. A., Sethna P. B., Brian D. A. 1990; Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. Journal of Virology 64:4108–4114
    [Google Scholar]
  20. Jeong Y. S., SeMakinothna S. 1992; Mechanism of coronavirus transcription: duration of primary transcription initiation activity and effects of subgenomic RNA transcription on RNA replication. Journal of Virology 66:3339–3349
    [Google Scholar]
  21. Kozak M. 1989; The scanning model for translation: an update. Journal of Cell Biology 108:229–241
    [Google Scholar]
  22. Kuo L., Harty J. T., Erickson L., Palmer G. A., Plagemann P. GW. 1991; Anested set of eight RNAs is formed in macrophages infected with lactate dehydrogenase-elevating virus. Journal of Virology 65:5118–5123
    [Google Scholar]
  23. Kuo L., Chen Z., Rowland R. RR., Faaberg K. S., Plagemann P. GW. 1992; Lactate dehydrogenase-elevating virus (LDV): subgenomic mRNAs, mRNA leader and comparison of 3´-terminal sequences of two LDV isolates. Virus Research 23:55–72
    [Google Scholar]
  24. Lai M. MC. 1990; Coronaviruses: organization, replication and expression of genome. Annual Review of Microbiology 44:303–333
    [Google Scholar]
  25. La Monica N., Yokomori K., Lai M. MC. 1992; Coronavirus mRNA synthesis: identification of novel transcription initiation signals which are differentially regulated by different leader sequences. Virology 188:402–407
    [Google Scholar]
  26. Lawrence C. B., Goldman D. A. 1988; Definition and identification of homology domains. CABIOS 425–33
    [Google Scholar]
  27. Lawrence C. B., Shalom T., Honda S. 1988#x2013;1989a EuGene: a Comprehensive Software Package for Nucleotide and Protein Sequence Analysis for UNIX Systems Houston: Molecular Biology Information Resource, Baylor College of Medicine;
    [Google Scholar]
  28. Lawrence C. B., Shalom T., Honda S. 1988#x2013;1989b; SAM: a Software Package for Sequence Assembly Management for UNIX Systems. Houston: Molecular Biology Information Resource, Baylor College of Medicine;
    [Google Scholar]
  29. Machamer C. E., Mentone S. A., Rose J. K., Farquhar M. G. 1990; The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proceedings of the National Academy of Sciences, U.S.A. 87:6944–6948
    [Google Scholar]
  30. Makino S., Stohlman S. A., Lai M. MC. 1986; Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. Proceedings of the National Academy of Sciences, U.S.A. 83:4204–4208
    [Google Scholar]
  31. Makino S., Soe L. H., Shieh C. K., Lai M. MC. 1988; Discontinuous transcription generates heterogeneity at the leader fusion sites of coronavirus mRNAs. Journal of Virology 62:3870–3873
    [Google Scholar]
  32. Makino S., Joo M., Makino J. K. 1991; A system for study of coronavirus mRNA synthesis: a regulated expressed subgenomic defective interfering RNA results from intergenic site insertion. Journal of Virology 64:6031–6041
    [Google Scholar]
  33. Maniatis T., Reed R. 1987; The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature, London 325:675–678
    [Google Scholar]
  34. Marchuk D., Drumm M., Saulino A., Collins F. S. 1991; Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Research 19:1154
    [Google Scholar]
  35. Meulenberg J. JM., Hulst M. H., de Meyer E. J., Moonen P. LJM., den Besten A., de Cluyver E. P., Wensvoort G., Moormann R. JM. 1993; Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192:62–72
    [Google Scholar]
  36. Plagemann P. GW., Moennig V. 1992; Lactate dehydrogenase-elevating virus, equine arteritis virus and simian hemorrhagic fever virus, a new group of positive strand RNA viruses. Advances in Virus Research 41:99–192
    [Google Scholar]
  37. Plagemann P. GW., Gregory K. G., Swim H. E., Chan K. KW. 1963; Plasma lactate dehydrogenase-elevating agent of mice: distribution in tissues and effect on lactate dehydrogenase isozyme patterns. Canadian Journal of Microbiology 9:75–86
    [Google Scholar]
  38. Plagemann P. GW., Harty J. T., Even C. 1992; Mode of neutralization of lactate dehydrogenase-elevating virus by polyclonal and monoclonal antibodies. Archives of Virology 123:89–100
    [Google Scholar]
  39. Sawicki S. G., Sawicki D. L. 1990; Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. Journal of Virology 64:1050–1056
    [Google Scholar]
  40. Schultz A. M., Henderson L. F., Oroszlan S. 1988; Fatty acylation of proteins. Annual Review of Cell Biology 4:611–647
    [Google Scholar]
  41. Sethna P. B., Hung S. L., Brian D. A. 1989; Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proceedings of the National Academy of Sciences, U.S.A. 86:5626–5630
    [Google Scholar]
  42. Shieh C. K., Soe L. H., Makino S., Chang M. F., Stohlman S. A., Lai M. MC. 1987; The 5´-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology 156:321–330
    [Google Scholar]
  43. Snijder E. J., Horzinek M. C., Spaan W. JM. 1990; A 3´-coterminal nested set of independently transcribed mRNAs is generated during Berne virus replication. Journal of Virology 64:331–338
    [Google Scholar]
  44. Snijder E. J., Wassenaar A. LM., Spaan W. JM. 1992; The 5´ end of the equine arthritis/virus replicase gene encodes a papainlike cysteine protease. Journal of Virology 66:7040–7048
    [Google Scholar]
  45. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  46. Steinhauer D. A., Holland J. J. 1987; Rapid evolution of RNA viruses. Annual Review of Microbiology 41:409–433
    [Google Scholar]
  47. Stueckemann J. A., Ritzi D. M., Holth M., Smith M. S., Swart W. J., Cafruny W. A., Plagemann PGW . 1982; Replication of lactate dehydrogenase-elevating virus in macrophages. I. Evidence for cytocidal replication. Journal of General Virology 59:245–262
    [Google Scholar]
  48. Towler D. A., Gordon J. L., Adams S. P., Glaser L. 1988; The biology and enzymology of eukaryotic protein acylation. Annual Review of Biochemistry 57:69–99
    [Google Scholar]
  49. van Berlo M. F., Horzinek M. C., van der Zeijst B. AM. 1982; Equine arteritis virus-infected cells contain six polyadenylated virus-specific RNAs. Virology 118:345–352
    [Google Scholar]
  50. von Heijne G. 1988; Transcending the impenetrable: how proteins come to terms with membranes. Biochimica et biophysica acta 947:307–333
    [Google Scholar]
  51. Yokomori K., Banner L. R., Lai M. MC. 1992; Coronavirus mRNA transcription: UV light transcriptional mapping studies suggest an early requirement for a genomic length template. Journal of Virology 66:4671–4678
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-4-643
Loading
/content/journal/jgv/10.1099/0022-1317-74-4-643
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error